Citation: ZHU Jian-Bo, XU You-Long, WANG Jie, WANG Jing-Ping. Electropolymerization and Characterization of Fast Charge-Discharge PPy/F-SWNTs Composite Materials[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 373-380. doi: 10.3866/PKU.WHXB201112021 shu

Electropolymerization and Characterization of Fast Charge-Discharge PPy/F-SWNTs Composite Materials

  • Received Date: 26 September 2011
    Available Online: 2 December 2011

    Fund Project: 国家高技术研究发展计划(863) (2007AA03Z249) (863) (2007AA03Z249)国家自然科学基金(20804030)资助项目 (20804030)

  • Fast charge-discharge composite materials of conducting polypyrrole and functionalized single-walled carbon nanotubes doped with p-toluenesulfonate (PPy-TOS/F-SWNTs) were prepared by galvanostatic electrochemical polymerization. Scanning Electron Microscope (SEM) images showed that the composite had a nano-rod structure with a diameter of about 70 nm. Nitrogen adsorption-desorption experinents were used to characterize the specific surface area (BET) (up to 12.64 m2·g-1) and pore sizes of the composite. Electrochemical properties of the composites were studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge (GC) measurements. The specific capacitance of this composite is about 211 F·g-1 (energy density: 18.7 Wh·kg-1) at a current density of 2.5 A·g-1, and 141.8 F·g-1 (energy density: 12.6 Wh·kg-1) at large current density of 80 A·g-1. The composite had excellent cyclability with a capacity retention of about 95.2% after 10000 cycles at a current density of 10 A·g-1. All these results indicate that this new composite material has a very rapidly charge-discharge ability
  • 加载中
    1. [1]

      (1) Simon, P.; tsi, Y. Nature Materials 2008, 7, 845.  

    2. [2]

      (2) Winter, M.; Brodd, R. J. Chemical Reviews 2004, 104, 4245.  

    3. [3]

      (3) Kalaji, M.; Murphy, P. J.;Williams, G. O. Synthetic Metals 1999, 102, 1360.  

    4. [4]

      (4) Bredas, J. L.; Street, G. B. Accounts of Chemical Research 1985, 18, 309.  

    5. [5]

      (5) Iroh, J. O.; Levine, K. Journal of Power Sources 2003, 117, 267.  

    6. [6]

      (6) Ingram, M. D.; Staesche, H.; Ryder, K. S. Solid State Ionics 2004, 169, 51.  

    7. [7]

      (7) Mastra stino, M.; Arbizzani, C.; Soavi, F. Solid State Ionics 2002, 148, 493.  

    8. [8]

      (8) Il Cho, S.; Lee, S. B. Accounts of Chemical Research 2008, 41, 699.  

    9. [9]

      (9) Groenendaal, B. L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Advanced Materials 2000, 12, 481.  

    10. [10]

      (10) Burke, A. Journal of Power Sources 2000, 91, 37.  

    11. [11]

      (11) Rudge, A.; Raistrick, I.; ttesfeld, S.; Ferraris, J. P. Electrochimica Acta 1994, 39, 273.  

    12. [12]

      (12) Zhang, L. L.; Zhao, S. Y.; Tian, X. N.; Zhao, X. S. Langmuir 2010, 26, 17624.  

    13. [13]

      (13) Biswas, S.; Drzal, L. T. Chemistry of Materials 2010, 22, 5667.  

    14. [14]

      (14) Frackowiak, E.; Khomenko, V.; Jurewicz, K.; Lota, K.; Beguin, F. Journal of Power Sources 2006, 153, 413.  

    15. [15]

      (15) Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science 1998, 280, 1253.  

    16. [16]

      (16) Iijima, S.; Yudasaka, M.; Nihey, F. Nec Technical Journal 2007, 2, 52.

    17. [17]

      (17) Lee, S.W.; Kim, B. S.; Chen, S.; Shao-Horn, Y.; Hammond, P. T. Journal of the American Chemical Society 2009, 131, 671.  

    18. [18]

      (18) Zhang, L. L.; Zhao, X. S. Chemical Society Reviews 2009, 38, 2520.  

    19. [19]

      (19) Tsang, S. C.; Chen, Y. K.; Harris, P. J. F.; Green, M. L. H. Nature 1994, 372, 159.  

    20. [20]

      (20) Chen, Z. Y.; Kobashi, K.; Rauwald, U.; Booker, R.; Fan, H.; Hwang,W. F.; Tour, J. M. Journal of the American Chemical Society 2006, 128, 10568.  

    21. [21]

      (21) Wang, J.; Xu, Y. L.; Chen, X.; Sun, X. F. Composites Science and Technology 2007, 67, 2981.  

    22. [22]

      (22) Wang, J.; Xu, Y. L.; Sun, X. F.; Xiao, F.; Mao, S. C. Acta Phys.-Chim. Sin. 2007, 23, 877. [王杰, 徐友龙, 孙孝飞, 毛胜春. 物理化学学报, 2007, 23, 877.]

    23. [23]

      (23) Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Nano Letters 2010, 10, 751.  

    24. [24]

      (24) Montesa, I.; Munoz, E.; Benito, A. M.; Maser,W. K.; Martinez, M. T. Journal of Nanoscience and Nanotechnology 2007, 7, 3473.  

    25. [25]

      (25) Li, Y. F. Journal of Electroanalytical Chemistry 1997, 433, 181.  

    26. [26]

      (26) Li, S.; Qiu, Y. B.; Guo, X. P. Acta Phys.-Chim. Sin. 2010, 26, 601. [李胜, 岳于兵, 郭兴蓬. 物理化学学报, 2010, 26, 601.]

    27. [27]

      (27) Naoi, K.; Simon, P. Electrochemical Society Interface 2008, 34.

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    7. [7]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    8. [8]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    13. [13]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    14. [14]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    15. [15]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    16. [16]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    17. [17]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    18. [18]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    19. [19]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(1690)
  • Abstract views(5458)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return