Citation: KONG Xiang-Lei. Effects of Mode-Mode Coupling on Vibrational Frequency Blue Shift in Improper H-Bonded Systems[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 303-308. doi: 10.3866/PKU.WHXB201112013 shu

Effects of Mode-Mode Coupling on Vibrational Frequency Blue Shift in Improper H-Bonded Systems

  • Received Date: 31 August 2011
    Available Online: 1 December 2011

    Fund Project: 国家自然科学基金(21052001)资助项目 (21052001)

  • Bond shortening of NH/CH due to improper hydrogen bonding is always thought to be accompanied by a blue shift in its corresponding frequency. However, results here show that owing to anharmonic effects, especially the contribution of mode-mode coupling, the blue shift could be greatly decreased. The strong interaction may even, in some cases, cause the previously predicted blue-shifting frequencies by harmonic methods to be red-shifted instead in the gas phase. Though these results need to be clearly verified by further infrared (IR) spectrum experiments in the gas phase for the selected systems, comparisons with previous IR results obtained from matrix isolation experiments strongly support the results of the calculations.
  • 加载中
    1. [1]

      (1) (a) Hobza, P.; Spirko, V.; Selzle, H. L.; Schlag, E.W. J. Phys. Chem. A 1998, 102, 2051. (b) Gu, Y.; Kar, T.; Scheiner, S. J. Am. Chem. Soc. 1999, 121, 9411. (c) Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253. (d) Zierkiewicz,W.; Jurecka, P.; Hobza, P. ChemPhysChem 2005, 6, 609. (e) Li, X.; Liu, L.; Schlegel, H. B. J. Am. Chem. Soc. 2002, 124, 9639. (f) Joseph, J.; Jemmis, E. D. J. Am. Chem. Soc. 2007, 129, 4620.

    2. [2]

      (2) (a) Liu, L.; Liu,W.; Li, H.; Liu, J.; Yang, Y. J. Phys. Chem. A 2006, 110, 11760. (b) Solimannejad, M.; Massahi, S.; Alkorta, I. Chem. Phys. 2009, 362, 1. (c) Yang, Y.; Liu, Y. Int. J. Quantum Chem. 2010, 110, 1264. (d) Trung, N. T.; Hue, T. T.; Nguyen, M. T. J. Phys. Chem. A 2009, 113, 3245. (e) Liu, Y.; Liu,W. Q.; Li, H. Y.; Yang, Y.; Cheng, S. Chin. J. Chem. 2007, 25, 44. (f) Solimannejad, M.; Scheiner, S. J. Phys. Chem. A 2008, 112, 4120. (g) Shirhatti, P. R.;Wategaonkar, S. Phys. Chem. Chem. Phys. 2010, 12, 6650.  

    3. [3]

      (3) (a) Nie, J.; Li, A. Y.; Yan, X. H. Acta Phys. -Chim. Sin. 2008, 24, 2000. [倪杰, 黎安勇, 闫秀花. 物理化学学报, 2008, 24, 2000.] (b) Li, A. Y. Sci. China Ser. B-Chem. 2008, 38, 557. [黎安勇. 中国科学B辑: 化学, 2008, 38, 557.] (c)Wang, S.W.; Li, A. Y.; Tan, H.W. Chem. J. Chin. Univ. 2007, 28, 1962. [王素纹, 黎安勇, 谭宏伟. 高等学校化学学报, 2007, 28, 1962.]

    4. [4]

      (4) Donoso-Tauda, O.; Jaque, P.; Santos, J. C. Phys. Chem. Chem. Phys. 2011, 13, 1552.

    5. [5]

      (5) Torrent-Sucarrat, M.; Anglada, J. M.; Luis, J. M. Phys. Chem. Chem. Phys. 2009, 11, 6377.

    6. [6]

      (6) (a) Jung, J. O.; Gerber, R. B. J. Chem. Phys. 1996, 105, 10332. (b) Chaban, G. M.; Jung, J. O.; Gerber, R. B. J. Phys. Chem. A 2000, 104, 2772. (c) Asmis, K. R.; Pivonka, N. L.; Santambrogio, G.; Brummer, M.; Kaposta, C.; Neumark, D. M.;Woste, L. Science 2003, 299, 1375. (d) Adesokan, A. A.; Gerber, R. B. J. Phys. Chem. A 2009, 113, 1905. (e) Yagi, K.; Hirao, K.; Taketsugu, T.; Schmidt, M.W.; rdon, M. S. J. Chem. Phys. 2004, 121, 1383.  

    7. [7]

      (7) Peters, N. J. S. J. Phys. Chem. A 1998, 102, 7001.  

    8. [8]

      (8) (a) Forda, T. A.; Glasser, L. J. Mol. Struct. -Theochem 1997, 398-399, 381. (b) ng, X. L.; Zhou, Z. Y.; Zhang, H.; Liu, S. Z. J. Mol. Struct. -Theochem 2005, 718, 23.  

    9. [9]

      (9) Schmidt, M.W.; Baldridge, K. K.; Boatz, J. J.; Elbert, S. T.; rdon, M. S.; Jensen, J. J.; Koseki, S.; Matsunage, N.; Nguyen, K. A.; Su, S.;Windus, T. L.; Dupuis, M.; Mon mery, J. A. J. Comput. Chem. 1993, 19, 1347.

    10. [10]

      (10) Jacox, M. E. J. Phys. Chem. Ref. Data 1984, 13, 945.  

    11. [11]

      (11) Jacox, M. E.; Milligan, D. E. J. Mol. Spectrosc. 1973, 48, 536.  

    12. [12]

      (12) Müller, R. P.; Huber, J. R. Reviews of Chemical Intermediates 1984, 5, 423

    13. [13]

      (13) Bouwens, R. J.; Hammerschmidt, J. A.; Graeskowiak, M. M.; Stefink, T. A.; Yorba, P. M.; Polik,W. F. J. Chem. Phys. 1996, 104, 460.  

    14. [14]

      (14) (a) Khoshkhoo, H.; Nixon, E. R. Spectrochim. Acta A 1973, 29, 603. (b) Nelander, B. J. Chem. Phys. 1980, 73, 1034. (c) van der Zwet, G. P.; Allamandola, L. J.; Baas, F.; Greenberg, J. M. J. Mol. Struct. 1989, 195, 213.  

    15. [15]

      (15) (a) Jacox, M. E. J. Phys. Chem. 1984, 88, 3373. (b) Müller, R. P.; Russegger, P.; Huber, J. R. Chem. Phys. 1982, 70, 281.  

    16. [16]

      (16) Wang, G. X.; Zhao, J.;Wang, J. P. Science China Chemistry 2011, 41, 1387. [王桂秀, 赵娟, 王建平. 中国科学: 化学, 2011, 41, 1387.]

    17. [17]

      (17) (a) Kohout, F. C.; Lampe, F.W. J. Am. Chem. Soc. 1965, 87, 5795. (b) Schafirovich, V.; Lymar, S. V. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 7340.  

  • 加载中
    1. [1]

      Suqing Shi Anyang Li Yuan He Jianli Li Xinjun Luan . Exploration and Practice of the “Progressive” Integrated Training Mode for Innovative Chemistry Talents at Comprehensive Universities in Western China. University Chemistry, 2024, 39(6): 42-49. doi: 10.3866/PKU.DXHX202402009

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    6. [6]

      Chengxia Tong Yajie Li Jin Yan Xuejian Qu Shigang Wei Yong Fan Zhiguang Song Yupeng Guo . The Construction and Practice of a Comprehensive and Three-Dimensional Practical Education Model. University Chemistry, 2024, 39(7): 49-55. doi: 10.12461/PKU.DXHX202404155

    7. [7]

      Junlin Yan Changhao Wang Quanguo Zhai Chenghui Liu Dong Xue . A New Construction Model and Practice of Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 64-68. doi: 10.12461/PKU.DXHX202405005

    8. [8]

      Weizhou Jiao Zhiwei Liu Chao Zhang Zhiguo Yuan Guisheng Qi Jing Gao . Construction and Implementation of a Mode of Chemical Talent Training Driven by Practice and Innovation Ability. University Chemistry, 2024, 39(7): 76-81. doi: 10.12461/PKU.DXHX202405011

    9. [9]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    10. [10]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    11. [11]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    12. [12]

      Yan Liu Xiaojun Han Ping Xu Guoxu Zhang Yu Wang Zhicheng Zhang Dianpeng Qi . “Five Measures” Based Science and Education Integration Experimental Teaching Mode to Promote the Construction of “Specialized Experiment” Curriculum. University Chemistry, 2024, 39(10): 299-307. doi: 10.12461/PKU.DXHX202405002

    13. [13]

      Yaqian Duan Juan Su Meiyu Lin Yuxin Fang Wenyi Liang . Exploration of the Implementation Path of Ideological and Political Education in the “Dual-Track Teaching” Model: a Case Study of Analytical Chemistry Experiment. University Chemistry, 2024, 39(2): 181-188. doi: 10.3866/PKU.DXHX202307024

    14. [14]

      Liqiang Lu Qin Shuai Xike Tian Chenggang Zhou Guo'e Cheng Bo han Yulun Nie Hongtao Zheng Lei Ouyang . Exploration and Practice of Deep Integration of Production and Education in Applied Chemistry Major under the Background of Emerging Engineering Education. University Chemistry, 2024, 39(3): 138-142. doi: 10.3866/PKU.DXHX202309015

    15. [15]

      Yaqing Zhou Jialin Liu Jili Wang Xin Zhou Yong Sun Wenhai Wu . Reform and Exploration of Assessment Models for Elective Courses in Local Universities: A Case Study of Hanjiang Normal University. University Chemistry, 2024, 39(4): 244-250. doi: 10.3866/PKU.DXHX202309056

    16. [16]

      Xinyue Zhang Yifeng Ding Ning Ma . Research on the “Project-based” Master’s Degree Model for Graduate Students in Materials and Chemical Engineering. University Chemistry, 2024, 39(6): 98-102. doi: 10.3866/PKU.DXHX202312093

    17. [17]

      Jing Li Lin Tian Zhao Li Yan Chen Zongfei Yang Huanhuan Shi . Exploration and Practice of the “134” Ideological and Political Teaching Model in the Introduction to Applied Chemistry. University Chemistry, 2024, 39(8): 7-15. doi: 10.3866/PKU.DXHX202311047

    18. [18]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    19. [19]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    20. [20]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

Metrics
  • PDF Downloads(774)
  • Abstract views(2286)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return