Citation: YANG Li-Kun, YANG Fang-Zu, TIAN Zhong-Qun, ZHOU Shao-Min. Initial Behavior of the Electroless Nickel Deposition on Pretreated Aluminum[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 414-420. doi: 10.3866/PKU.WHXB201112011 shu

Initial Behavior of the Electroless Nickel Deposition on Pretreated Aluminum

  • Received Date: 8 October 2011
    Available Online: 1 December 2011

    Fund Project: 国家自然科学基金(20873114, 20833005, 21021002) (20873114, 20833005, 21021002) 国家重点基础研究发展规划项目(973) (2009CB930703) (973) (2009CB930703)福建省科技计划项目(2009H4020)资助 (2009H4020)

  • The initial behavior of electroless nickel deposition on aluminum pretreated by nickel immersion and electroless nickel pre-plating processes was studied measuring the open circuit potential (OCP) as a function of time (EOCP-t). Scanning electron microscopy (SEM) was used to observe the surface morphology of the pretreated specimens. During the initial stages of the electroless nickel deposition, all pretreated and un-pretreated aluminum substrates experienced removal of the oxide film, activation, mixed control and electroless nickel deposition. After nickel immersion and electroless nickel pre-plating, fine nickel particles were attached to the surface of the aluminum. Our experimental results, including EOCP-t and SEM, indicate that electroless nickel plating in a weak acidic bath was successfully accomplished on the aluminum pretreated with a double treatment of electroless nickel pre-plating in an alkaline nickel solution containing a complexing agent and a reductant. The nickel coating obtained adhered to the aluminum substrate, had a granular appearance and an amorphous structure.
  • 加载中
    1. [1]

      (1) Chen, C. Y.; Lin, K. Y.; Tsai,W. T.; Chang, J. K.; Tseng, C. M. In. J. Hydrog. Energy 2010, 35(11), 5490.

    2. [2]

      (2) Kar, K. K.; Sathiyamoorthy, D. J. Mater. Process. Technol. 2009, 209(6), 3022.

    3. [3]

      (3) Lee, C. K. Material Chemistry and Physics 2009, 114(1), 125.

    4. [4]

      (4) Niwa, D.; Takano, N.; Yamada, T.; Osaka, T. Electrochimi. Acta 2003, 48(9), 1295.

    5. [5]

      (5) Gu, C. D.; Lian, J. S.; Li, G. Y.; Niu, L. Y.; Jiao, Z. H. Surf. Coat. Technol. 2005, 197(1), 61.

    6. [6]

      (6) Jia, F.;Wang, Z. C. Acta Phys.-Chim. Sin. 2011, 27(3), 633. [贾飞, 王周成. 物理化学学报, 2011, 27(3), 633.]

    7. [7]

      (7) Gao, Y.; Zhen, Z. J.; Cao, D. H. Electroplating and Pollution Control 2005, 25(2), 21. [高岩, 郑志军, 曹达华. 电镀与环保, 2005, 25(2), 21.]

    8. [8]

      (8) Zhao, M. J.; Cai, C.;Wang, L.; Zhang, Z.; Zhang, J. Q. Surf. Coat. Technol. 2010, 205(7), 2160.

    9. [9]

      (9) Huang, X.M.; Jiang, L. M.; Li, N.; Li, D. Y. Corrosion Science and Protection Technology 2006, 18(2), 107. [黄晓梅, 蒋丽敏, 李宁, 黎德育. 腐蚀科学与防护技术, 2006, 18(2), 107.]

    10. [10]

      (10) Yin, G. G. Surface Technology 2004, 33(2), 43. [尹国光. 表面技术, 2004, 33(2), 43.]

    11. [11]

      (11) Li, X. Y.; Zeng, X. G.; Zheng, X.W.; Liang,W. Plating & Finishing 2011, 33(8), 38. [李新跃, 曾宪光, 郑兴文, 梁伟. 电镀与精饰, 2011, 33(8), 38.]

    12. [12]

      (12) Takács, D.; Sziráki, L.; Török, T. I.; Sólyom, J.; Gácsi, Z.; Gál-Solymos, K. Surf. Coat. Technol. 2007, 201(8), 4526.

    13. [13]

      (13) Kou, S. C.; Hung, A. Plating & Surface Finishing 2003, 90(3), 44.

    14. [14]

      (14) Kou, S. C.; Hung, A. Plating & Surface Finishing 2002, 89(2), 48.

    15. [15]

      (15) Tong, H.;Wang, C. M. Acta Chim. Sin. 2002, 60(11), 1923. [佟浩, 王春明. 化学学报, 2002, 60(11), 1923.]

    16. [16]

      (16) Ma, M. R.; Deng, S. T.;Wang, G. X.; Li, N. Electroplating & Pollution Control 2006, 26(4), 26. [马梅容, 邓舒太, 王桂香, 李宁. 电镀与环保, 2006, 26(4), 26.]

    17. [17]

      (17) Ger, M. D.; Sung, Y.; Ou, J. L. Materials Chemistry and Physics 2005, 89(2-3),383.

    18. [18]

      (18) Elsentriecy, H. H.; Azumi, K.; Konno, H. Electrochimi. Acta 2007, 53(2), 1006.

    19. [19]

      (19) Elsentriecy, H. H.; Azumi, K. J. Electrochem. Soc. 2009, 156(2), 70.

    20. [20]

      (20) Elsentriecy, H. H.; Azumi, K.; Konno, H. Surf. Coat. Technol. 2007, 202(3), 532.

    21. [21]

      (21) Gu, X.; Hu, G. H.;Wang, Z. C.; Lin, C. J. Acta Phys.-Chim. Sin. 2004, 20(2), 113. [谷新, 胡光辉, 王周成, 林昌健. 物理化学学报, 2004, 20(2), 113.]

    22. [22]

      (22) Wang, G. X.; Li, N.; Tu, Z. M. Materials Protection 2005, 38 (5), 1. [王桂香, 李宁, 屠振密. 材料保护, 2005, 38(5), 1.]

    23. [23]

      (23) Yang, F. Z.; Cheng, M. H.; Huang, X. J.; Tian, Z. Q.; Zhou, S. M. Electrochemistry 2010, 16(4), 1. [杨防祖, 陈明辉, 黄夏菁, 田中群, 周绍民. 电化学, 2010, 16(4), 1.]

    24. [24]

      (24) u, Y. N.; Huang,W. J.; Chen,W. B.; Tan, G. F.; Xue, Y. Corrosion and Protection 2010, 31(3): 225. [沟引宁, 黄伟九, 陈文彬, 谈国峰, 薛燕. 腐蚀与防护, 2010, 31(3): 225.]

    25. [25]

      (25) He, Z. C.; Qin, T. N.; Ding, Y.; Ma, L. Q. Light Alloy Fabrication Technology 2009, 37(3), 44. [贺忠臣, 秦铁男, 丁毅, 马立群. 轻合金加工技术, 2009, 37(3), 44.]

    26. [26]

      (26) Gu, C. D.; Lian, J. S.; Li, G. Y.; Niu, L. Y.; Jiao, Z. H. J. Alloy. Comp. 2005, 391(1-2), 104.

  • 加载中
    1. [1]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    2. [2]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    5. [5]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    14. [14]

      Juan Yang . Construction of General Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 8-13. doi: 10.12461/PKU.DXHX202408026

    15. [15]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    16. [16]

      Yutao Lu Jing Wu . Rebirth from the Flames: Unveiling the “Chemical Secrets” of Fire Smoke. University Chemistry, 2024, 39(9): 208-213. doi: 10.12461/PKU.DXHX202401001

    17. [17]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    18. [18]

      Dongcheng Liu Xiaokun Li Huancheng Hu Cunji Gao Qiong Hu Shuting Li Yuning Liang . Chemistry Experimental Teaching Reform for the Promotion of Training Exceptional Chemistry Teachers for Normal Schools. University Chemistry, 2024, 39(8): 1-6. doi: 10.3866/PKU.DXHX202311072

    19. [19]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    20. [20]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

Metrics
  • PDF Downloads(1019)
  • Abstract views(2143)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return