Citation: LI Yong-Chao, LI Tie-Long, WANG Xue, JIN Zhao-Hui. One-Step Synthesis of Fe@SiO2 and Its Application in Cr(VI) Removal[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2711-2718. doi: 10.3866/PKU.WHXB20111134 shu

One-Step Synthesis of Fe@SiO2 and Its Application in Cr(VI) Removal

  • Received Date: 17 June 2011
    Available Online: 21 September 2011

    Fund Project: 国家自然科学基金(40971254, 20907023, 41173102) (40971254, 20907023, 41173102)

  • Without using aqueous ammonia and a surface modifier, a facile one-step method was developed to fabricate Fe nanoparticles coated with a SiO2 shell (Fe@SiO2) by a modified Stöber method combined with an aqueous reduction method. The Fe@SiO2 was prepared by directly adding potassium borohydride to a mixed solution of tetraethylorthosilicate (TEOS) and anhydrous ferric chloride. The structure and morphology of the as-synthesized powders were investigated by X-ray powder diffraction (XRD), energy dispersion analysis of X-ray (EDAX), transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier-transform infrared (FTIR) spectrometry and X-ray photoelectron spectroscopy (XPS). The feasibility of using the prepared Fe@SiO2 for the reductive immobilization of Cr(VI) in water was studied. The influence of TEOS addition on Cr(VI) removal by Fe@SiO2 was investigated. The results showed that the prepared Fe@SiO2 had a distinct core-shell structure. One or two Fe nanoparticles (20-30 nm in diameter) were homogeneously coated by a porous SiO2 shell. With an increase in the amount of added TEOS the Fe nanoparticles had better dispersion and the thickness of the SiO2 coating increased gradually. Compared with uncoated Fe nanoparticles, Cr(VI) removal by Fe@SiO2 increased greatly. At a TEOS dosage of 0.1 mL the removal ability of the prepared Fe@SiO2 was the highest. The highest removal ability of Fe@SiO2 was 466.67 mg·g-1 and it was only 76.35 mg·g-1 for uncoated Fe nanoparticles.
  • 加载中
    1. [1]

      (1) Palmer, C. D.;Wittbrodt, P. R. Environ. Health Persp. 1991, 92, 25.  

    2. [2]

      (2) Legrand, L.; El Figuigui, A.; Mercier, F.; Chausse, A. Environ. Sci. Technol. 2004, 38, 4587.  

    3. [3]

      (3) Ponder, S. M.; Darab, J. G.; Mallouk, T. E. Environ. Sci. Technol. 2000, 34, 2564.  

    4. [4]

      (4) He, F.; Zhao, D. Environ. Sci. Technol. 2005, 39, 3314.  

    5. [5]

      (5) Raychoudhury, T.; Naja, G.; Ghoshal, S. J. Contam. Hydrol. 2010, 118, 143.  

    6. [6]

      (6) He, F.; Zhao, D. Environ. Sci. Technol. 2007, 41, 6216.  

    7. [7]

      (7) Li, S. J.; Li, T. L.; Xiu, Z. M.; Jin, Z. H. J. Environ. Monit. 2010, 12, 1153.  

    8. [8]

      (8) Wang, Y. F.; Biradar, A. V.; Duncan, C.T.; Asefa, T. J. Mater. Chem. 2010, 20, 7834.  

    9. [9]

      (9) Zhang, L.; Hu, B.; Chen, H.; Li, X. J.; Li, R. X. Acta Phys. -Chim. Sin. 2010, 26, 2422. [张磊, 胡博, 陈华, 李贤均, 李瑞祥. 物理化学学报, 2010, 26, 2422.]

    10. [10]

      (10) Kim, H. J.; Ahn, J. E.; Haam, S.; Shul, Y. G.; Song, S. Y.; Tatsumi, T. J. Mater. Chem. 2006, 16, 1617.  

    11. [11]

      (11) Wang, G. H.; Harrison, A. J. Colloid Interface Sci. 1999, 217, 203.  

    12. [12]

      (12) Li, Y. S.; Church, J. S.;Woodhead, A. L.; Moussa, F. Spectrochim . Actat A 2010, 76, 484.  

    13. [13]

      (13) Zheng, T. H.; Zhan, J. J.; He, J. B.; Day, C.; Lu, Y. F.; McPherson, G. L.; Piringer, G.; John, V. T. Environ. Sci. Technol. 2008, 42, 4494.  

    14. [14]

      (14) Yi, D. K.; Lee, S. S.; Ying, J. Y. Chem. Mater. 2006, 18, 2459.  

    15. [15]

      (15) Yang, P.; Ando, M.; Murase, N. Langmuir 2011, 27, 895.  

    16. [16]

      (16) EPA China. Analysis Methods forWater andWastewater, 4th ed.; Chinese Environmental Science Press: Beijing, 2002; pp 346-349. [国家环保局, 水和废水检测分析方法. 第四版. 北京: 中国环境出版社, 2002: 346-349.]

    17. [17]

      (17) Saleh, N.; Sirk, K.; Liu, Y.; Phenrat, T.; Dufour, B.; Matyjaszewski, K.; Tilton, R. D.; Lowry, G.V. Environ. Eng. Sci. 2007, 24, 45.  

    18. [18]

      (18) Zhang, L.; Manthiram, A. Appl. Phys. Lett. 1997, 70, 2469.  

    19. [19]

      (19) Yuan, M. L.; Tao, J. H.; Yan, G. J.; Tan, M. Y.; Qiu, G. Z. Trans. Nonferrous Met. Soc. China 2010, 20, 632.  

    20. [20]

      (20) Yang, T. I.; Brown, R. N. C.; Kempel, L. C.; Kofinas, P. Nanotechnology 2011, 22, 105601.  

    21. [21]

      (21) Zhang, Y.; Chen,W. Z.; Zhang,W. G.; Acta Chim. Sin. 2003, 61, 141. [章仪, 陈文哲, 章文汞. 化学学报, 2003, 61, 141.]

    22. [22]

      (22) Bruni, S.; Cariat, F.; Casu, M.; Lai, A.; Musinu, A.; Piccaluga, G.; Solinas, S. Nanostruct. Mater. 1999, 11, 573.  

    23. [23]

      (23) Cheng, J.; Ni, X. M.; Zheng, H. G.; Li, B. B.; Zhang, X. J.; Zhang, D. E. Mater. Res. Bull. 2006, 41, 1424.  

    24. [24]

      (24) Zhao,W. Y.; Zhang, Q. J.; Guan, J. G.; Tang, X. F. Bull. Chin. Cera. Soci. 2007, 26, 38. [赵文俞, 张清杰, 官建国, 唐新峰. 硅酸盐通报, 2007, 26, 38.]

    25. [25]

      (25) Powell, R. M.; Puls, R.W.; Hightower, S. K.; Sabatini, D. A. Environ. Sci. Technol. 1995, 29, 1913.  

    26. [26]

      (26) Liu, H. F.; Kong, F. J.; Rao, Y. Y.; Dong, J.; Qian,W. P. Acta Chim. Sin. 2010, 68, 865. [刘浩富, 孔凡娟, 饶艳英, 董健, 钱卫平. 化学学报, 2010, 68, 865.]

    27. [27]

      (27) Xu, Y. H.; Zhao, D. Y. Water Res. 2007, 41, 2101.  

    28. [28]

      (28) Li, X. Q.; Cao, J.; Zhang,W. X. Ind. Eng. Chem. Res. 2008, 47, 2131.  

    29. [29]

      (29) Fendorf, S. E.; Lamble, G. M.; Stapleton, M. G.; Kelley, M. J.; Sparks, D. L. Environ. Sci. Technol. 1994, 28, 284.  

    30. [30]

      (30) Oh, Y. J.; Song, H.; Shin,W. S.; Choi, S. J.; Kim, Y. H. Chemosphere 2007, 66, 858.  

  • 加载中
    1. [1]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    2. [2]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    3. [3]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    6. [6]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    7. [7]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    13. [13]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    14. [14]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    15. [15]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    19. [19]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    20. [20]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(1108)
  • Abstract views(2333)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return