Citation: SHI Ji-Cheng, XU Hong-Feng, LU Lu, FU Jie. Synthesis and Characterization of Nd2Fe14B/PANI and Its Function during the Oxygen Transfer Process[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2625-2631. doi: 10.3866/PKU.WHXB20111133
-
Nd2Fe14B/PANI magnetic powder was prepared by ball milling and in-situ polymerization. The samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The function of Nd2Fe14B/PANI in the oxygen transfer process was determined using an electrochemical three electrode system and a zinc air battery. The results showed that Nd2Fe14B/PANI was a one-dimensional lamellar nanostructured material with an electrical conductivity of 0.54 S·cm-1, an intrinsic coercive force of 149.57 kA·m-1, and a residual magnetization of 20.27 A·m2·kg-1. For a 0.40 mg·cm-2 Nd2Fe14B/PANI load density the magnetic electrode reached a higher double electric layer capacitance, a smaller charge transfer resistance than a nonmagnetic electrode and the polarization current of the magnetic zinc air battery also increased. For a 3.60 mg·cm-2 load density the results were contrary to those of the 0.40 mg· cm-2 load density test. We found that the micro magnetic field promoted the oxygen transfer process and improved the zinc air battery performance when the Nd2Fe14B/PANI load density was less than 0.89 mg· cm-2. At a load density higher than 3.56 mg·cm-2, the micro magnetic field inhibited oxygen transfer and reduced the zinc air battery discharge performance. The PANI in this material also improved the zinc air battery discharge performance.
-
-
[1]
(1) Gerard, M.; Poirot-Crouvezier, J. P.; Hissel, D.; Pera, M. C. Int. J. Hydrog. Energy 2010, 35, 12295.
-
[2]
(2) Sapkota, P.; Kim, H. J. Ind. Eng. Chem. 2009, 15, 445.
-
[3]
(3) Cai, J.;Wang, L.;Wu, P.; Li, Z. Q.; Tong, L.; Sun, S. F. J. Magn. Magn. Mater. 2008, 320, 171.
-
[4]
(4) Simeonidis, K.; Sarafidis, C.; Papastergiadis, E.; Angelakeris, M.; Tsiaoussis, I.; Kalogirou, O. Intermetallics 2011, 19, 589.
-
[5]
(5) Hu, J. M.; Liu, X. L.; Zhang, J. Q.; Cao, C. N. Prog. Org. Coat. 2006, 55, 388.
-
[6]
(6) Blackwood, D. J.; Balak Risnan, B.; Huang, Y. Z.; Tan, C. K. J. Magn. Magn. Mater. 2001, 223, 103.
-
[7]
(7) Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Prog. Polym. Sci. 2009, 34, 783.
-
[8]
(8) Oh, S. G.; Im, S. S. Curr. Appl. Phys. 2002, 2, 273.
-
[9]
(9) Lu, H. B.; Zhou, Y. Z.; Vongehr, S.; Hu, K.; Meng, X. K. Synth. Met. 2011, 161, 1368.
-
[10]
(10) Sathiyanarayanan, S.; Devi, S.; Venkatachari, G. Prog. Org. Coat. 2006, 56, 114.
-
[11]
(11) Brozová, L.; Holler, P.; Kovárová, J.; Stejskal, J.; Trchová, M. Polym. Degrad. Stab. 2008, 93, 592.
-
[12]
(12) Geng, L. N.;Wu, S. H. Chin. J. Inorg. Chem. 2011, 27, 47. [耿丽娜, 吴世华. 无机化学学报, 2011, 27, 47.]
-
[13]
(13) Shi, L.; Luo, Z. Y.;Wu, X. D.; Yang, X. J.; Lu, L. D.;Wang, X. Spectrosc. Spectr. Anal. 2011, 31, 461. [史莉, 罗志远, 武晓东, 杨绪杰, 陆路德, 汪信. 光谱学与光谱分析, 2011, 31, 461.]
-
[14]
(14) Zhou, J. H.; Sui, Z. J.; Zhu, J.; Li, P.; Chen, D.; Dai, Y. C.; Yuan, W. K. Carbon 2007, 45, 785.
-
[15]
(15) Rao, P. S.; Sathyanarayana, D. N.; Palaniappan, S. Macromolecules 2002, 35, 4988.
-
[16]
(16) Yoshimoto, S.; Ohashi, F.; Kameyama, T. J. Polym. Sci. Part BPolym. Phys. 2005, 43, 2705.
-
[17]
(17) Wang, F. C.; Lü, Y.; Xu, M.; Gao, Y. Chin. J. Inorg. Chem. 2009, 25, 465. [王凤春, 吕莹, 徐敏, 高雨. 无机化学学报, 2009, 25, 465. ]
-
[18]
(18) Su, B. T.; Zuo, X.W.; Hu, C. L.; Lei, Z. Q. Acta Chim. Sin. 2008, 66, 2681. [苏碧桃, 左显维, 胡常林, 雷自强. 化学学报, 2008, 66, 2681.]
-
[19]
(19) Kapil, K.; Taunk, M.; Chand, S. J. Mater. Sci.- Mater. Electron. 2010, 21, 399.
-
[20]
(20) Ma, J. J.; Zhang, X. B.; Yan, C.; Tong, Z.W.; Inoue, H. J. Mater. Sci. 2008, 43, 5534.
-
[21]
(21) Jin, Z. Q.; Chakka, V. M.;Wang, Z. L.; Liu, J. P.; Kadolkar, P.; Ott, R. D. Journal of the Minerals, Metals and Materials Society 2006, 58 (6), 46.
-
[22]
(22) Chang, K. T.;Weng, C. I. Comput. Mater. Sci. 2008, 43, 1048.
-
[23]
(23) Bica, I. J. Ind. Eng. Chem. 2009, 15, 605.
-
[24]
(24) Aoyagi, S.; Yano, A.; Yanagida, Y.; Tanihira, E.; Tagawa, A.; Iimoto, M. Chem. Phys. 2006, 331, 137.
-
[25]
(25) Okada, T.;Wakayama, N. I.;Wang, L. B.; Shingu, H.; Okano, J. I.; Ozawa, T. Electrochim. Acta 2003, 48, 531.
-
[26]
(26) Zeng, J.H.; Liao, S. J.; Lee, J. Y.; Liang, Z. X. Int. J. Hydrog. Energy 2010, 35, 942.
-
[27]
(27) Rhen, F. M. F.; Hinds, G.; Coey, J. M. D. Electrochem. Commun. 2004, 6, 413.
- [28]
-
[29]
(29) Rabah, K. L.; Chopart, J. P.; Schloerb, H.; Saulnier, S.; Aaboubi, O.; Uhlemann, M.; Elmi, D.; Amblard, J. J. Electroanal. Chem. 2004, 571 (1), 85.
-
[30]
(30) Li, S. Q.; Zhang, G. L.; Jing, G. L.; Kan, J. Q. Synth. Met. 2008, 158, 242.
-
[1]
-
-
[1]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[2]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[3]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[4]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[5]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[6]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[7]
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
-
[8]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[9]
Yingxian Wang , Tianye Su , Limiao Shen , Jinping Gao , Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015
-
[10]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[11]
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
-
[12]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[13]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[14]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[15]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[16]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[17]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[18]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[19]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[20]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[1]
Metrics
- PDF Downloads(671)
- Abstract views(1687)
- HTML views(4)