Citation: LIU Li, TIAN Fang-Hua, WANG Xian-You, ZHOU Meng. Electrochemical Behavior of LiV3O8 in Aqueous Li2SO4 Solution[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2600-2604. doi: 10.3866/PKU.WHXB20111126 shu

Electrochemical Behavior of LiV3O8 in Aqueous Li2SO4 Solution

  • Received Date: 13 July 2011
    Available Online: 15 September 2011

    Fund Project: 国家自然科学基金(20871101) (20871101) 湖南省教育厅项目(10C1250) (10C1250) 湖南省自然科学基金(11JJ4038) (11JJ4038)湖南省科技厅项目(2010RS4027)资助 (2010RS4027)

  • Nanostructured LiV3O8 powder was synthesized by a low-temperature solid-state method. Scanning election microscopy (SEM) and transmission electron microscopy (TEM) show that the as-prepared material is composed of nanostructured particles. X-ray diffraction (XRD) measurements indicate that the as-prepared material has a monoclinic structure with a space group of P21/m. The electrochemical properties of the LiV3O8 electrodes in 1 mol·L-1 Li2SO4, 2 mol·L-1 Li2SO4, and saturated Li2SO4 aqueous electrolytes were studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in this work. The results show that the LiV3O8 electrode in the saturated Li2SO4 electrolyte has the best electrochemical properties. An aqueous rechargeable lithium battery (ARLB) containing a LiV3O8 anode, a LiNi1/3Co1/3Mn1/3O2 cathode, and a saturated Li2SO4 electrolyte was fabricated. The battery delivered an initial capacity of 95.2 mAh·g-1 and retained a capacity of 37.0 mAh·g-1 after 100 cycles at a charge-discharge rate of 0.5C (1C=300 mA·g-1).
  • 加载中
    1. [1]

      (1) Liu, X. H.; Saito, T.; Doi, T.; Okada, S.; Yamaki, J. J. Power Sources 2009, 189, 706.  

    2. [2]

      (2) Zhang, S.; Li, Y.;Wu, C.; Zheng, F.; Xie, Y. J. Phys. Chem. C 2009, 113, 15058.  

    3. [3]

      (3) Li,W.; Dahn, J. R.;Wainwright, D. Science 1994, 264, 1115.  

    4. [4]

      (4) James, G. Science 1994, 264, 1084.  

    5. [5]

      (5) Luo, J. Y.; Xia, Y. Y. Adv. Funct. Mater. 2007, 17, 3877.  

    6. [6]

      (6) Kohler, J.; Makihara, H.; Uegaito, H.; Inoue, H.; Toki, M. Electrochim. Acta 2000, 46, 59.  

    7. [7]

      (7) Wang, G.; Fu, L.; Zhao, N.; Yang, L.;Wu, Y.;Wu, H. Angew. Chem. Int. Edit. 2007, 46, 295.  

    8. [8]

      (8) Ruffo, R.;Wessells, C.; Huggins, R. A.; Cui, Y. Electrochem. Commun. 2009, 11, 247.  

    9. [9]

      (9) Zeng, X. L.; Huang, Y. Y.; Luo, F. L.; He, Y. B.; Tong, D. G. J. Sol-Gel Sci. Technol. 2010, 54, 139.  

    10. [10]

      (10) Zhao, M. S.; Song, X. P.;Wang, F.; Dai,W. M.; Lu, X. G. Electrochim. Acta 2011, 56, 5673.  

    11. [11]

      (11) Wang, G. J.; Zhang, H. P.; Fu, L. J.;Wang, B.;Wu, Y. P. Electrochem. Commun. 2007, 9, 1873.  

    12. [12]

      (12) Wang, Y.; Luo, J.;Wang, C.; Xia, Y. J. Electrochem. Soc. 2006, 153, A1425.

    13. [13]

      (13) Liu, L.; Jiao, L.; Sun, J.; Zhao, M.; Zhang, Y.; Yuan, H.;Wang, Y. Solid State Ionics 2008, 178, 1756.  

    14. [14]

      (14) Caballero, A.; Morales, J.; Vargas, O. A. J. Power Sources 2010, 195, 4318.  

    15. [15]

      (15) Heli, H.; Yadegari, H.; Jabbari, A. Materials Chemistry and Physics 2011, 126, 477.

    16. [16]

      (16) Nakayama, N.; Yamada, I.; Huang, Y.; Nozawa, T.; Iriyam, Y.; Abe, T.; Ogumi, Z. Electrochim. Acta 2009, 54, 3428.  

    17. [17]

      (17) Wang, H.; Huang, K.; Zeng, Y.; Yang, S.; Chen, L. Electrochim. Acta 2007, 52, 3280.  

    18. [18]

      (18) Wang, H.; Zeng, Y.; Huang, K.; Liu, S.; Chen, L. Electrochim. Acta 2007, 52, 5102.  

    19. [19]

      (19) Wang, G. J.; Qu, Q. T.;Wang, B.; Shi, Y.; Tian, S.;Wu, Y. P.; Holze, R. J. Power Sources 2009, 189, 503.  

    20. [20]

      (20) Wang, G. J.; Zhao, N. H.; Yang, L. C.;Wu, Y. P.;Wu, H. Q.; Holze, R. Electrochim. Acta 2007, 52, 4911.  

    21. [21]

      (21) Tang,W.; Liu, L. L.; Tian, S.; Li, L.; Yue, Y. B.;Wu, Y. P.; Guan, S. Y.; Zhu, K. Electrochem. Commun. 2010, 12, 1524.  

    22. [22]

      (22) Luo, J. Y.; Cui,W. J.; He, P.; Xia, Y. Y. Nature Chemistry 2010, 2, 760.  

    23. [23]

      (23) Wang, G. J.; Fu, L. J.;Wang, B.; Zhao, N. H.;Wu, Y. P.; Holze, R. J. Appl. Electrochem. 2008, 38, 579.  

    24. [24]

      (24) Wang, G. J.; Qu, Q. T.;Wang, B.; Shi, Y.; Tian, S.;Wu, Y. P.; Holze, R. Electrochim. Acta 2009, 54, 1199.  

    25. [25]

      (25) Chen, C. H.; Liu, J.; Amine, K. J. Power Sources 2001, 96, 321.  

    26. [26]

      (26) Zhao, Y.;Wang, Y. Y.; Lai, Q. Y. L.; Chen, M.; Hao, Y. J.; Ji, X. Y. Synthetic Metals 2009, 159, 336.

  • 加载中
    1. [1]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    5. [5]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    16. [16]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    17. [17]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    18. [18]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(1209)
  • Abstract views(2152)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return