Citation: MAO Dong-Sen, GUO Qiang-Sheng, YU Jun, HAN Lu-Peng, LU Guan-Zhong. Effect of Cerium Addition on the Catalytic Performance of Cu-Fe/SiO2 for the Synthesis of Lower Alcohols from Syngas[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2639-2645. doi: 10.3866/PKU.WHXB20111125 shu

Effect of Cerium Addition on the Catalytic Performance of Cu-Fe/SiO2 for the Synthesis of Lower Alcohols from Syngas

  • Received Date: 25 July 2011
    Available Online: 13 September 2011

    Fund Project: 上海市科委(08520513600) (08520513600) 上海市教委曙光跟踪计划(10GG23) (10GG23)上海市教委重点学科建设(J51503)资助项目 (J51503)

  • A series of Ce-Cu-Fe/SiO2 catalysts with different Ce contents (mole fraction relative to SiO2, 0-20%) were prepared by co-impregnation and their catalytic performances for CO hydrogenation to lower alcohols were investigated using a continuous flow fixed bed micro-reactor. These catalysts were characterized by X-ray diffraction (XRD), N2-adsorption, temperature-programmed reduction of H2 (H2-TPR), Fourier transform infrared of CO adsorption (CO-FTIR), and temperature-programmed desorption of CO (CO-TPD). The results showed that the addition of an appropriate amount of Ce decreased the Cu crystal size and promoted the dispersion of Cu, which greatly increased the amount of adsorbed CO. Additionally, the interaction of doped Ce with Cu increased the associative and dissociate adsorption capacity of CO, which is favorable for the formation of CHx and the insertion reaction of adsorbed CO to CHx. Both the activity and alcohol selectivity of the Cu-Fe/SiO2 catalyst increased under the combined effect of the above-mentioned two aspects. At a Ce content of 10%, the space time yield of lower alcohols improved from 58.0 g·kg-1·h-1 over the Cu-Fe/SiO2 catalyst to 121.0 g·kg-1·h-1 over the Ce-Cu-Fe/SiO2 catalyst at 250 °C, a pressure of 3.0 MPa, a H2/CO molar ratio of 2, and gas hourly space velocity of 6000 mL·g-1·h-1.
  • 加载中
    1. [1]

      (1) Li, D. B.; Ma, Y. G.; Qi, H. J.; Li,W. H.; Sun, Y. H.; Zhong, B. Prog. Chem. 2004, 16, 584. [李德宝, 马玉刚, 齐会杰, 李文怀, 孙予罕, 钟炳. 化学进展, 2004, 16, 584.]

    2. [2]

      (2) Fang, K. G.; Li, D. B.; Lin, M. G.; Xiang, M. L.;Wei,W.; Sun, Y. H. Catal. Today 2009, 147, 133.  

    3. [3]

      (3) Shi, L. M.; Chu,W.; Liu, Z. C. Chem. Ind. Eng. Prog. 2011, 30, 162. [士丽敏, 储伟, 刘增超. 化工进展, 2011, 30, 162.]

    4. [4]

      (4) Gupta, M.; Smith, M. L.; Spivey, J. J. ACS Catal. 2011, 1, 641.  

    5. [5]

      (5) Ye, T. Q.; Zhang, Z. X.; Xu, Y.; Yan, S. Z.; Zhu, J. F.; Liu, Y.; Li, Q. X. Acta Phys. -Chim. Sin. 2011, 27, 1493. [叶同奇, 张朝霞, 徐勇, 颜世志, 朱九方, 刘勇, 李全新. 物理化学学报, 2011, 27, 1493.]

    6. [6]

      (6) Lin, M. G.; Fang, K. G.; Li, D. B.; Sun, Y. H. Catal. Commun. 2008, 9, 1869.  

    7. [7]

      (7) Yang, X. M.;Wei, Y.; Su, Y. L.; Zhou, L. P. Fuel Process. Tech. 2010, 91, 1168.  

    8. [8]

      (8) Shi, L. M.; Chu,W.; Deng, S.Y.;Xu,H.Y. J. Nat. Gas Chem. 2008, 17, 397.  

    9. [9]

      (9) Li, J.;Wang, J. C.; Dou, B. S.;Wu, Y. Acta Phys. -Chim. Sin. 1997, 13, 278. [李静, 汪景春, 窦伯生, 吴越. 物理化学学报, 1997, 13, 278.]

    10. [10]

      (10) Ran, H. F.; Fang, K. G.; Lin, M. G.; Sun, Y. H. Nat. Gas Chem. Ind. 2010, 35, 1. [冉宏峰, 房克功, 林明桂, 孙予罕. 天然气化工, 2010, 35, 1.]

    11. [11]

      (11) Xu, R.; Ma, Z. Y.; Yang, C.;Wei,W.; Sun, Y. H. Acta Phys. -Chim. Sin. 2003, 19, 423. [徐润, 马中义, 杨成, 魏伟, 孙予罕. 物理化学学报, 2003, 19, 423.]

    12. [12]

      (12) Zhang, H.; Chu,W.; Xu, H. Y.; Zhou, J. Fuel 2010, 89, 3127.  

    13. [13]

      (13) Lin, M. G.; Fang, K. G.; Li, D. B.; Sun, Y. H. Acta Phys. -Chim. Sin. 2008, 24, 833. [林明桂, 房克功, 李德宝, 孙予罕. 物理化学学报, 2008, 24, 833.]

    14. [14]

      (14) Xu, R.; Chen, X. P.; Sun, Y. H. Nat. Gas Chem. Ind. 2001, 26, 5. [徐润, 陈小平, 孙予罕. 天然气化工, 2001, 26, 5.]

    15. [15]

      (15) Kiennemann, A.; Breault, R.; Hindermann, J. P.; Laurin, M. J. Chem. Soc. Faraday Trans. 1 1987, 83, 2119.  

    16. [16]

      (16) Mazzocchia, C.; Gronchi, P.; Kaddouri, A.; Tempesti, E.; Zanderighi, L.; Kiennemann, A. J. Mol. Catal. A 2001, 165, 219.  

    17. [17]

      (17) Wang, Y. Q. Chin. J. Catal. 1999, 20, 103. [王亚权. 催化学报, 1999, 20, 103.]

    18. [18]

      (18) Shi, L. M.; Chu,W.; Xu, H. Y.; Deng, S. Y. Rare Metal Mater. Eng. 2009, 38, 1382. [士丽敏, 储伟, 徐慧远, 邓思玉. 稀有金属材料与工程, 2009, 38, 1382.]

    19. [19]

      (19) Zhang, H. T.; Yang, X. M.; Zhou, L. P.; Su, Y. L.; Liu, Z. M. J. Nat. Gas Chem. 2009, 18, 337.  

    20. [20]

      (20) Xu, J.;Wang,W. X. Chin. J. Catal. 1992, 13, 420. [徐杰, 王文祥. 催化学报, 1992, 13, 420.]

    21. [21]

      (21) Yang, Z. Q.; Mao, D. S.; Guo, Q. S.; Gu, L. Acta Phys. -Chim. Sin. 2010, 26, 3278. [杨志强, 毛东森, 郭强胜, 顾蕾. 物理化学学报, 2010, 26, 3278.]

    22. [22]

      (22) Xu, H. Y.; Chu,W.; Deng, S. Y. Acta Phys. -Chim. Sin. 2010, 26, 345. [徐慧远, 储伟, 邓思玉. 物理化学学报, 2010, 26, 345.]

    23. [23]

      (23) Yang, Z. Q.; Mao, D. S.;Wu, R. C.; Yu, J.;Wang, Q. Acta Phys. -Chim. Sin. 2011, 27, 1163. [杨志强, 毛东森, 吴仁春, 俞俊, 王倩. 物理化学学报, 2011, 27, 1163.]

    24. [24]

      (24) Slaa, J. C.; van Ommen, J. G.; Ross, J. R. H. Top. Catal. 1995, 2, 79.  

    25. [25]

      (25) Xu, R.;Wei,W.; Dong, Q. N.; Sun, Y. H. Spectr. Spectr. Anal. 2003, 23, 1093. [徐润, 魏伟, 董庆年, 孙予罕. 光谱学与光谱分析, 2003, 23, 1093.]

    26. [26]

      (26) Xu, R.; Ma, Z. Y.; Yang, C.;Wei,W.; Sun, Y. H. React. Kinet. Catal. Lett. 2004, 81, 91.  

    27. [27]

      (27) Xu, H. Y.; Chu,W.; Shi, L. M.; Zhang, H.; Deng, S. Y. J. Fuel Chem. Technol. 2009, 37, 212. [徐慧远, 储伟, 士丽敏, 张辉, 邓思玉. 燃料化学学报, 2009, 37, 212.]  

    28. [28]

      (28) Chu,W.; Kieffer, R.; Kiennemann, A.; Hindermann, J. P. Appl. Catal. A 1995, 121, 95.

    29. [29]

      (29) Chen, X. P.; Zhao, N.; Sun, Y. H.; Ren, J.;Wang, X. Z.; Zhong, B. Coal Conversion 1998, 21, 22. [陈小平, 赵宁, 孙予罕, 任杰, 王秀芝, 钟炳. 煤炭转化, 1998, 21, 22.]

    30. [30]

      (30) Xu, R.; Yang, C.;Wei,W.; Li,W. H.; Sun, Y. H.; Hu, T. D. J. Mol. Catal. A 2004, 221, 51.  

  • 加载中
    1. [1]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(892)
  • Abstract views(2206)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return