Citation: WANG Li-Geng, YUAN Ting, LI Yuan, SHI Wei, NI Zhe-Ming. Interlayer Reaction of Thiosulfate in a Confined Region of Layered Double Hydroxides[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 273-282. doi: 10.3866/PKU.WHXB201111243 shu

Interlayer Reaction of Thiosulfate in a Confined Region of Layered Double Hydroxides

  • Received Date: 1 August 2011
    Available Online: 24 November 2011

  • The thiosulfate anion (S2O32-) was intercalated into a ZnAl layered double hydroxide (LDH), and its oxidation reaction with hexacyanoferrate(III) (Fe(CN)63-) in the confined region between the layers of LDH has been discussed. Based measurements of the intermediate state and final product using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, the oxidation product tetrathionate (S4O62-) dissolved in solution, while the reduction product hexacyanoferrate (II) existed in the interlayer of the LDH. Furthermore, the kinetics of this reaction were investigated in batch mode. The influences of the initial Fe(CN)63- concentration, ZnAl-S2O3 LDH quantity, and reaction temperature on the oxidation reaction were studied. The reaction follows a diffusion-controlled process represented by Crank-Ginstling and Brounstein model with the apparent activation energy of 24.6 kJ·mol-1, which was about 13.7 kJ·mol-1 less than that of the solution reaction under the same conditions. The influence of water content on interlayer spacing was simulated by molecular dynamics. The simulation result shows that the size of this microreactor can be regulated in a certain orientation in the solution environment. From the experimental results and theoretical calculation, we propose a mechanism for the interlayer reaction. This layered material can be used as a novel nano-reactor to regulate the rate of chemical reactions.
  • 加载中
    1. [1]

      (1) Newman, S. P.; Jones,W. New J. Chem. 1998, 22, 105.  

    2. [2]

      (2) Yuan Q.;Wei, M.; Evan, D.; Duan, X. J. Phys. Chem. B 2004, 108, 12381.  

    3. [3]

      (3) Miyata, S. Clays Clay Miner. 1983, 31, 305.  

    4. [4]

      (4) Yan, D.; Lu, J.;Wei, M.; Li, H.; Ma, J.; Li, F.; Evans, D. G.; Duan, X. J. Phys. Chem. A 2008, 33, 7671.

    5. [5]

      (5) Yang,W. S.; Kim, Y.; Liu, P. K. T.; Sahimi, M.; Tsotsis, T. T. Chem. Eng. Sci. 2002, 57, 2954

    6. [6]

      (6) Hou, X.Q.; Kalinichev, A. G.; Krikpatrick, R. J. Chem. Mater. 2002, 14, 2078.  

    7. [7]

      (7) Xu, Q.; Ni, Z. M.; Yao, P.; Li Y. J. Mol. Struct. 2010, 977, 165.  

    8. [8]

      (8) Li, Y.; Ni, Z. M.; Xu ,Q.; Yao, P.; Liu, X. M.;Wang, Q. Q. J. Chin. Ceramic Soc. 2011, 39, 63. [李远, 倪哲明, 胥倩, 姚萍, 刘晓明, 王巧巧. 硅酸盐学报, 2011, 39, 63.]

    9. [9]

      (9) Das, D. P.; Das, J.; Parida, K. J. Colloid Interface Sci. 2003, 261, 213.  

    10. [10]

      (10) Pérez-Bemal, M. E.; Ruano-Casero, R.; Pinnavaia, T. J. Catal. Lett. 1991, 11, 55.  

    11. [11]

      (11) Choudary, B. M.; Kantam, M. L.; Kavita, B.; Reddy, C. V.; Figueras, F. Tetrahedron 2000, 56, 9357.  

    12. [12]

      (12) Zubitur, M.; Gómez, M. A.; Cortázar, M. Poly. Degrad. Stab. 2009, 5, 804.

    13. [13]

      (13) Lee, K.; Nam, J.H.; Lee, J.H.; Lee, Y.; Cho, S.M.; Jung, C.H.; Choi, H.G.; Chang, Y.Y.; Kwon, Y. U.; Nam, J. D. Electrochem. Commun. 2005, 7, 113.  

    14. [14]

      (14) Ji, X. M.; Li, M. L.; Zhao, Y. X.;Wei, Y. B.; Xu, Q. H. Solid State Sci. 2009, 6, 1170.

    15. [15]

      (15) Choi, G.; Lee, J.H.; Oh, Y. J.; Choy, Y. B.; Park, M. C.; Chang, H. C.; Choy, J. H. Int. J. Pharm. 2010, 402, 117.  

    16. [16]

      (16) Arulraj, J.; Rajamathi, J. T.; Prabhu, K. R.; Rajamathi, M. Solid State Sci. 2007, 9, 812..  

    17. [17]

      (17) Das, N.; Das, R. Appl. Clay Sci. 2008, 42, 90.  

    18. [18]

      (18) Freund, P. L.; Spiro, M. J. Phys. Chem. 1985, 7, 1074.

    19. [19]

      (19) Freund, P. L.; Spiro, M. J. Chem. Soc. Faraday Trans. 1986, 82, 2277.  

    20. [20]

      (20) Li, Y.; Petroski, J.; El-Sayed, M. A. J. Phys. Chem. B 2000, 104, 10956.  

    21. [21]

      (21) Li, D.; Sun, C. Y.; Huang, Y. J.; Li, J. H.; Chen, S.W. Sci. China, Ser. B-Chem. 2005, 35, 33. [李迪, 孙春燕, 黄云杰, 李景虹, 陈少伟. 中国科学B辑: 化学, 2005, 35, 33.]

    22. [22]

      (22) Bonnet, S.; Forano, C.; de Roy, A.; Besse, J. P.; Maillard, P. Maomenteau, M. Chem. Mater. 1996, 8, 1962.

    23. [23]

      (23) Meng,W.; Li, F.; Evans, D. G.; Duan, X.; Mater. Res. Bull. 2004, 39, 1185.  

    24. [24]

      (24) Kloprogge, J. T.;Weier, M.; Crespo, I.; Ulibarri, M. A.; Barriga, C.; Rives, V.; Martens,W. N.; Frost, R. L. J. Solid State Chem. 2004, 177, 1382.  

    25. [25]

      (25) Thomas, N.; Rajamathi, M. Langmuir 2009, 25, 2212.  

    26. [26]

      (26) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordinatio Compound; Chemical Industry Press: Beijing, 1999; pp 187-188; translated by Huang, D. R.,Wang, R. Q. [Nakamoto, K. 无机和配位化合物红外和拉曼光谱.黄德如, 王仁庆译. 北京: 化学工业出版社, 1999: 187-188. ]

    27. [27]

      (27) Fernández, J. M.; Ulibarri, M. A. ; Labajos, F.; Rives, V. J. Mater. Chem. 1998, 8, 2507.  

    28. [28]

      (28) Yao, K.; Tanaguchi, M.; Nakata, M.; Shimazu, K.; Takahashi, M.; Yamagishi, A. J. Electroanal. Chem. 1998, 457, 119.  

    29. [29]

      (29) Dickinson, C. F.; Heal, G. R. Thermochim. Acta 1999, 340, 89.  

    30. [30]

      (30) Markus, H.; Fugleberg, S.; Valtakari, D.; Salmi, T.; Murzin, D. Y.; Lahtinen, M. Chem. Eng. Sci. 2004, 59, 919.  

    31. [31]

      (31) Ho, Y. S.; Ng, J. C. Y.; McKay, G. S. Purif. Methods 2000, 29, 189.  

    32. [32]

      (32) Lazaridis, N. K.; Asouhidou, D. D. Water Res. 2003, 37, 2875.  

    33. [33]

      (33) Lv, L.; He, J.;Wei, M.; Evans, D. G. and Zhou, Z. L. Water Res. 2007, 7, 1534.

    34. [34]

      (34) Howleit,W. E.;Wedzicha, B. L. Inorg. Chim. Acta 1976, 18, 133.  

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    3. [3]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    7. [7]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    8. [8]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    15. [15]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    18. [18]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    19. [19]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    20. [20]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

Metrics
  • PDF Downloads(1009)
  • Abstract views(3427)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return