Citation: GAO Ping, TAN Zhuo, CHENG Fu-Quan, ZHOU Heng-Hui, TAN Song-Ting. Effect of Doping with Ti4+ Ion on the Electrochemical Performance of LiFe0.6Mn0.4PO4/C[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 338-342. doi: 10.3866/PKU.WHXB201111242 shu

Effect of Doping with Ti4+ Ion on the Electrochemical Performance of LiFe0.6Mn0.4PO4/C

  • Received Date: 13 September 2011
    Available Online: 24 November 2011

    Fund Project: 国家高技术研究发展计划项目(863) (2009AA035200)资助 (863) (2009AA035200)

  • Ti-doped LiFe0.6Mn0.4PO4/C materials were synthesized by a solid-state method. The structures, morphologies, and electrochemical performance of the materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and galvanostatic charge-discharge experiments. The results indicate that Ti4+ doping does not change the structure of the materials, but remarkably improves their electrochemical performance. Li(Fe0.6Mn0.4)0.96Ti0.02PO4/C shows excellent rate performance, with initial specific discharge capacities of 160.3 and 134.7 mAh·g-1 at 0.1C and 10C rates. Even at the higher rate of 20C, it shows a discharge capacity of 124.4 mAh·g-1. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) analyses show that the resistance and the polarization of the LiFe0.6Mn0.4PO4/C composite electrode could be effectively decreased by Ti4+ doping, which would account for the improved electrode performance.
  • 加载中
    1. [1]

      (1) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.  

    2. [2]

      (2) Nie, Z. X.; Ouyang, C. Y.; Chen, J. Z.; Zhong, Z. Y.; Du, Y. L.; Liu, D. S.; Shi, S. Q. Solid .State. Commun. 2010, 150, 40.  

    3. [3]

      (3) Yamada, A.; Kudo, Y.; Liu, K. Y. J. Electrochem. Soc. 2001, 148, A747.

    4. [4]

      (4) Atsuo, Y.; Sai, C. C. J. Electrochem. Soc. 2001, 148, A960.

    5. [5]

      (5) Matthew, R. R.; Girts, V.; Guy, D.; John, R. O. J. Electrochem. Soc. 2010, 157, A381.

    6. [6]

      (6) Tatsuya, N.; Kiyotaka, S.; Shiro, S.; Yo, K.; Mitsuharu, T.; Yoshihiro, Y. J. Electrochem. Soc. 2007, 54, A1118.

    7. [7]

      (7) Dong, H. B.; Jae, K. K.; Yong, J. S.; Ghanshyam, S. C.; Jou- Hyeon, A.; Ki-Won, K. J. Power Sources 2009, 189, 59.  

    8. [8]

      (8) Hyeokjo, G.; Dong, H. S.; Sung,W. K.; Jongsoon, K.; Kisuk, K. Adv. Funct. Mater. 2009, 19, 3285.  

    9. [9]

      (9) Atsuo, Y.; Yuki, T.; Hiroshi, K.; Noriyuki, S.; Ryoji, K.; Keiji, I.; Masao, Y.; Takashi, K. Chem. Mater. 2006, 18, 804.  

    10. [10]

      (10) Surendra, K. M.; Judith, G.; Ortal, H.; Ella, Z.; Thierry, D. James, H. M.; Ivan, E.; Andreas, K.; Boris, M. Angew. Chem. Int. Edit. 2009, 48, 8559.  

    11. [11]

      (11) Young, P.; Jongsoon, K.; Hyeokjo, G.; Dong, S.; Sung, K.; Kisuk, K. Chem. Mater. 2010, 22, 2573.  

    12. [12]

      (12) Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123.  

    13. [13]

      (13) Wang, G. X.; Steve, B.; Yao, J.; Ahn, J. H.; Dou, S. X.; Liu, H. K. Electrochem. Solid-State Lett. 2004, 7, A503.

    14. [14]

      (14) Ni, J. F.; Zhou, H. H.; Chen, J. T.; Su, G. Y. Acta Phys. -Chim. Sin. 2004, 20, 582. [倪江峰, 周恒辉, 陈继涛, 苏光耀. 物理化学学报, 2004, 20, 582.]

    15. [15]

      (15) Wang, D. Y.; Li, H.; Shi, S. Q.; Huang, X. J.; Chen, L. Q. Electrochim. Acta 2005, 50, 2955.  

    16. [16]

      (16) Wua, S. H.; Chen, M. S.;Wu, Y. P. J. Power Sources 2009, 189, 440.  

    17. [17]

      (17) Tomoyuki, S.; Shigeto, O.; Takayuki, D.; Yamaki, J. Electrochim. Acta 2009, 54, 3145.  

    18. [18]

      (18) Tong, D. G.; Luo, F. L.; Chu,W.; Li, Y. L.;Wu, P. Mater. Chem. Phys. 2010, 124, 1.  

    19. [19]

      (19) Yang, G.; Ni, H.; Liu, H. D.; Gao, P.; Ji, H. M.; Roya, S.; Pintob, J.; Jiang, X. F. J. Power Sources 2011, 196, 4747.  

    20. [20]

      (20) Ma, J.; Li, B. H.; Du, H. D.; Xu, C. J.; Kang, F. Y.; J. Electrochem. Soc. 2011, 158, A26.

    21. [21]

      (21) Yang, M. R.; Ke,W. H. J. Electrochem. Soc. 2008, 155, A729.

    22. [22]

      (22) Shin, H. C.; Park, S. B.; Jang, H.; Chung, K. Y.; Cho, B.W. Electrochim. Acta 2008, 53, 7964.

    23. [23]

      (23) Ma, J.; Li, B. H.; Du, H. D.; Xu, C. J.; Kang, F. Y. Electrochim. Acta 2011, 56, 7385.  

    24. [24]

      (24) Wang, Z. L.; Sun, S. R.; Xia, D. G.; Chu,W. S.; Zhang, S.;Wu, Z. Y. J. Phys. Chem. C 2008, 112, 17450.  

    25. [25]

      (25) Shin, H. C.; Cho,W. I.; Jang, H. J. Power Sources 2006, 159, 1383.  

    26. [26]

      (26) Xia, Y.; Yoshio, M.; Noguchi, H. Electrochim. Acta 2006, 52, 240.  

    27. [27]

      (27) Li, Y. D.; Zhao, S. X.; Nan, C.W.; Li, B. H. J. Alloy. Compd. 2011, 509, 957.  

    28. [28]

      (28) Kim, D. H.; Kim, J. K. J. Phys. Chem. Solid 2007, 68, 734.  

    29. [29]

      (29) Nonglak, M.; Yu, H. K.; Scott, A. S.; Chiang, Y. M. Adv. Funct. Mater. 2009, 19, 1060.  

    30. [30]

      (30) Xu, J.; Chen, G. Physica B 2010, 405, 803.  

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    4. [4]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    5. [5]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    11. [11]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    12. [12]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    13. [13]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    17. [17]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    18. [18]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

Metrics
  • PDF Downloads(1232)
  • Abstract views(2338)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return