Citation: ZHANG Guo-Liang, ZHAO Dan, GUO Pei-Zhi, WEI Zhong-Bin, ZHAO Xiu-Song. Glycerol-Assisted Synthesis and Electrochemical Properties of Co3O4 Nanowires[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 387-392. doi: 10.3866/PKU.WHXB201111241 shu

Glycerol-Assisted Synthesis and Electrochemical Properties of Co3O4 Nanowires

  • Received Date: 11 October 2011
    Available Online: 24 November 2011

    Fund Project: 国家自然科学基金(20803037, 21143006) (20803037, 21143006) 山东省自然科学基金(ZR2009BM013) (ZR2009BM013)青岛市应用基础研究项目(11-2-4-2-(8)-jch)资助 (11-2-4-2-(8)-jch)

  • Cobalt oxide (Co3O4) nanowires were controllably synthesized using glycerol and Co(NO3)2 as reagents and adjustment of the experimental parameters. The morphology and structure of the asprepared products were characterized by a series of techniques such as X-ray podwer diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Electrochemical performance of the nanowires was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. It was found that two pairs of redox peaks appeared in the CV curves of Co3O4 nanowire electrodes at low scan rates. The specific capacitance of the Co3O4 nanowire electrodes was 163 F·g-1 at a current density of 1 A·g-1, according to the galvanostatic charge-discharge measurements. Cycle stability tests showed that the specific capacitance increased over the first tens of cycles and then reduced slowly. After 1000 cycles, the capacitance retention was over 98% at 1 A·g-1 and 80% at 4 A·g-1; it then decreased obviously with further increase in cycle number. In Li-ion battery measurements, Co3O4 nanowire electrodes showed a discharge capacitance of 1124 mAh·g-1 which decreased rapidly during the cycle test. The formation mechanism and the relationship between the structure and electrochemical properties of Co3O4 nanowires were discussed based on the experimental results.
  • 加载中
    1. [1]

      (1) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025.  

    2. [2]

      (2) Xia, Y.; Yang, P.; Sun, Y.;Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353.  

    3. [3]

      (3) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.;Wang, Z. L. Science 2007, 316, 732.  

    4. [4]

      (4) Xiong, S. L.; Yuan, C. Z.; Zhang, X. G.; Xi, B. J.; Qian, Y. T. Chem. Eur. J. 2009, 15, 5320.  

    5. [5]

      (5) Guo, P. Z.;Wei, Z. B.;Wang, B. Y.; Ding, Y. H.; Li, H. L.; Zhang, G. L.; Zhao, X. S. Colloids Surf. A 2011, 380, 237.

    6. [6]

      (6) Chen, C. H.; Abbs, S. F.; Morey, A.; Sithambaram, S.; Xu, L. P.; Garces, H. F.; Hines,W. A.; Suib, S. L. Adv. Mater. 2008, 20, 1205.  

    7. [7]

      (7) Li, Y. G.; Tan, B.;Wu, Y. Y. J. Am. Chem. Soc. 2006, 128, 14258.  

    8. [8]

      (8) Cong, H. P.; Yu, S. H. Cryst. Growth Des. 2009, 9, 210.  

    9. [9]

      (9) Chen, Y. C.; Hu, L.;Wang, M.; Min, Y. L.; Zhang, Y. G. Colloids Surf. A 2009, 336, 64.  

    10. [10]

      (10) Li,W. Y.; Xu, L. N.; Chen, J. Adv. Funct. Mater. 2005, 15, 851.  

    11. [11]

      (11) Wei, T. Y.; Chen, C. H.; Chang, K. H.; Lu, S. Y.; Hu, C. C. Chem. Mater. 2009, 21, 3228.  

    12. [12]

      (12) Zhao, Z. G.; Geng, F. X.; Bai, J. B.; Cheng, H. M. J. Phys. Chem. C 2007, 111, 3848.  

    13. [13]

      (13) Hu, L. H.; Peng, Q.; Li, Y. D. J. Am. Chem. Soc. 2008, 130, 16136.  

    14. [14]

      (14) Lou, X.W.; Deng, D.; Lee, J. Y.; Archer, L. A. J. Mater. Chem. 2008, 18, 4397.  

    15. [15]

      (15) Li, Y. G.; Tan, B.;Wu, Y. Y. Nano Lett. 2008, 8, 265.  

    16. [16]

      (16) Mekhemer, G. A. H.; Abd-Allah, H. M. M.; Mansour, S. A. A. Colloids Surf. A 1999, 160, 251.  

    17. [17]

      (17) Salabas, E. L.; Rumplecker, A.; Kleitz, F.; Radu, F.; Schueth, F. Nano Lett. 2006, 6, 2977.  

    18. [18]

      (18) Nam, K. T.; Kim, D.W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Science 2006, 312, 885.  

    19. [19]

      (19) Li, T.; Yang, S.; Huang, L.; Gu, B.; Du, Y. Nanotechnology 2004, 15, 1479.  

    20. [20]

      (20) Kang, Y. M.; Song, M. S.; Kim, J. H.; Kim, H. S.; Park, M. S.; Lee, J. Y.; Liu, K. H.; Dou, S. X. Electrochim. Acta 2005, 50, 3667.  

    21. [21]

      (21) Yang, L. X.; Zhu, Y. J.; Li, L.; Zhang, L.; Tong, H.;Wang,W. W.; Cheng, G. F.; Zhu, J. F. Eur. J. Inorg. Chem. 2006, 4787.

    22. [22]

      (22) Xiu, S. N.; Shahbazi, A.; Shirley, V.; Mims, M. R.;Wallace, C. W. J. Anal. Appl. Pyrol. 2010, 87, 194

    23. [23]

      (23) Yao, J. F.; Yu, L.; Zhang, L. X.;Wang, H. T. Mater. Lett. 2011, 65, 2304

    24. [24]

      (24) Li, X. H.; Zhang, D. H.; Chen, J. S. J. Am. Chem. Soc. 2006, 128, 8382.  

    25. [25]

      (25) Guo, P. Z.; Han, G. T.;Wang, B. Y.; Zhao, X. S. Acta Phys. - Chim. Sin. 2010, 26, 2557. [郭培志, 韩光亭, 王宝燕, 赵修松. 物理化学学报, 2010, 26, 2557.]

    26. [26]

      (26) Zheng, M.; Cao, J.; Liao, S.; Liu, J.; Chen, H.; Zhao, Y.; Dai, W.; Ji, G.; Cao, J.; Tao, J. J. Phys. Chem. C 2009, 113, 3887.  

    27. [27]

      (27) Gao, Y. Y.; Chen, S. L.; Cao, D. X.;Wang, G. L.; Yin, J. L. J. Power Sources 2010, 195, 1757.  

    28. [28]

      (28) Lin, C.; Ritter, J. A.; Popov, B. N. J. Electrochem. Soc. 1998, 145, 4097.  

    29. [29]

      (29) Barbero, C.; Planes, G. A.; Miras, M. C. Electrochem. Commun. 2001, 3, 113.  

    30. [30]

      (30) Xu, J.; Gao, L.; Cao, J. Y.;Wang,W. C.; Chen. Z. D. Electrochim. Acta 2010, 56, 732.  

    31. [31]

      (31) Ye, X. G.; Zhang, X. G.; Mi, H. Y.; Yang, S. D. Acta Phys. - Chim. Sin. 2008, 24, 1105. [叶向果, 张校刚, 米红宇, 杨苏东. 物理化学学报, 2008, 24, 1105.]

    32. [32]

      (32) Lou, X.W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Adv. Mater. 2008, 20, 258.  

    33. [33]

      (33) Kang, J. G.; Ko, Y. D.; Park, J. G.; Kim, D.W. Nanoscale Res. Lett. 2008, 3, 390.  

    34. [34]

      (34) Binotto, G.; Larcher, D.; Prakash, A. S.; Urbina, R. H.; Hegde, M. S.; Tarascon, J. M. Chem. Mater. 2007, 19, 3032.  

    35. [35]

      (35) Yao,W. L.;Wang, J. L.; Yang, J.; Du, G. D. J. Power Sources 2008, 176, 369.  

    36. [36]

      (36) Wu, Z. S.; Ren,W. C.;Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng H. M. ACS Nano 2010, 4, 3187.  

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    5. [5]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    6. [6]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    7. [7]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    9. [9]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    10. [10]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    11. [11]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    14. [14]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    15. [15]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    16. [16]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    17. [17]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    20. [20]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

Metrics
  • PDF Downloads(1152)
  • Abstract views(2925)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return