Citation: CAO Jian, CAO Zan-Xia, ZHAO Li-Ling, WANG Ji-Hua. Effect of α-Synuclein (1-17) Peptide for Cu2+-Bound and Metal-Free Forms by Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 479-488. doi: 10.3866/PKU.WHXB201111231 shu

Effect of α-Synuclein (1-17) Peptide for Cu2+-Bound and Metal-Free Forms by Molecular Dynamics Simulations

  • Received Date: 19 September 2011
    Available Online: 23 November 2011

    Fund Project: 国家自然科学基金(30970561, 31000324)资助项目 (30970561, 31000324)

  • The Cu2+-bound and metal-free α-synuclein (1-17) peptides were simulated with the GROMOS 43A1 force field in the GROMACS package. There were six groups and each group was run for 500 ns in the physiological environment, giving a total of 3 μs. It was found that the Cu2+-bound α-synuclein (1-17) peptide contained more unfluctuating secondary structure samples and more β-conformations than the metal-free α-synuclein (1-17) peptide. Simulations indicate that the Cu2+-bound α-synuclein (1-17) peptide prefers conformations that allow larger solvent exposure of hydrophobic residues than the metal-free α-synuclein (1-17) peptide, which provides underlying evidence for why Cu2+ promotes the aggregation of α-synuclein. By mapping the free energy surface landscape, we found that conformations of Cu2+-bound α-synuclein (1-17) peptide distribute more compactly than the metal-free α-synuclein (1-17) peptide. The results are almost the same as the central conformation obtained by conformational clustering analysis. These new findings indicate that Cu2+ modulates the conformation of α-synuclein from intrinsic disorder to order, which is central to the conformational dynamic and thermodynamic properties of the Cu2+-bound and metal-free α-synuclein (1-17) peptides at the molecular level. This work is propitious to understanding the mechanisms of Cu2+ participation in the fibrillization of α-synuclein.
  • 加载中
    1. [1]

      (1) Singleton, A. B.; Farrer, M.; Johnson, J.; Singleton, A.; Hague, S.; Kachergus, J.; Hulihan, M.; Peuralinna, T.; Dutra, A.; Nussbaum, R.; Lincoln, S.; Crawley, A.; Hanson, M.; Maraganore, D.; Adler, C.; Cookson, M. R.; Muenter, M.; Baptista, M.; Miller, D.; Blancato, J.; Hardy, J.; Gwinn-Hardy, K. Science 2003, 302 (5646), 841.

    2. [2]

      (2) Kruger, R.; Kuhn,W.; Muller, T.;Woitalla, D.; Graeber, M.; Kosel, S.; Przuntek, H.; Epplen, J. T.; Schols, L.; Riess, O. Nat. Genet. 1998, 18 (2), 106.

    3. [3]

      (3) Volles, M. J.; Lansbury, P. T. Jr. Biochemistry 2003, 42 (26), 7871.

    4. [4]

      (4) Zarranz, J. J.; Alegre, J.; mez-Esteban, J. C.; Lezcano, E.; Ros, R.; Ampuero, I.; Vidal, L.; Hoenicka, J.; Rodriguez, O.; Atares, B.; Llorens, V.; mez-Tortosa, E.; del Ser, T.; Munoz, D. G.; de Yebenes, J. G. Ann. Neurol. 2004, 55 (2), 164.

    5. [5]

      (5) Giasson, B. I.; Murray, I. V.; Trojanowski, J. Q.; Lee, V. M. J. Biol. Chem. 2001, 276 (4), 2380.

    6. [6]

      (6) Bodner, C. R.; Maltsev, A. S.; Dobson, C. M.; Bax, A. Biochemistry 2010, 49 (5), 862.

    7. [7]

      (7) Hoyer,W.; Cherny, D.; Subramaniam, V.; Jovin, T. M. M. Biochemistry 2004, 43 (51), 16233.

    8. [8]

      (8) Dunker, A. K.; Brown, C. J.; Lawson, J. D.; Iakoucheva, L. M.; Obradovic, Z. Biochemistry 2002, 41 (21), 6573.

    9. [9]

      (9) Huang,Y. Q.; Liu, Z. R. Acta Phys. -Chim. Sin. 2010, 26 (8), 2061. [黄永棋, 刘志荣. 物理化学学报, 2010, 26 (8), 2061.]

    10. [10]

      (10) Bertoncini, C.W.; Jung, Y. S.; Fernandez, C. O.; Hoyer,W.; Griesinger, C.; Jovin, T. M.; Zweckstetter, M. Proc. Natl. Acad. Sci. U S A 2005, 102 (5), 1430.

    11. [11]

      (11) Dedmon, M. M.; Lindorff-Larsen, K.; Christodoulou, J.; Vendruscolo, M.; Dobson, C. M. J. Am. Chem. Soc. 2005, 127 (2), 476.

    12. [12]

      (12) Spillantini, M. G.; Crowther, R. A.; Jakes, R.; Hasegawa, M.; edert, M. Proc. Natl. Acad. Sci. U S A 1998, 95 (11), 6469.

    13. [13]

      (13) Masliah, E.; Rockenstein, E.; Veinbergs, I.; Mallory, M.; Hashimoto, M.; Takeda, A.; Sagara, Y.; Sisk, A.; Mucke, L. Science 2000, 287 (5456), 1265.

    14. [14]

      (14) Allsop, D.; Mayes, J.; Moore, S.; Masad, A.; Tabner, B. J Biochem. Soc. Trans. 2008, 36, 1293.  

    15. [15]

      (15) Paik, S. R.; Shin, H. J.; Lee, J. H.; Chang, C. S.; Kim, J. Biochem. J. 1999, 340, 821.  

    16. [16]

      (16) Davies, P.;Wang, X.; Sarell, C. J.; Drewett, A.; Marken, F.; Viles, J. H.; Brown, D. R. Biochemistry 2010, 50 (1), 37.

    17. [17]

      (17) rell, J. M.; Johnson, C. C.; Rybicki, B. A.; Peterson, E. L.; Kortsha, G. X.; Brown, G. G.; Richardson, R. J. Neurotoxicology 1999, 20, 239.

    18. [18]

      (18) Pall, H. S.;Williams, A. C.; Blake, D. R.; Lunec, J.; Gutteridge, J. M.; Hall, M.; Taylor, A. Lancet 1987, 2, 238.

    19. [19]

      (19) Rasia, R. M.; Bertoncini, C.W.; Marsh, D.; Hoyer,W.; Cherny, D.; Zweckstetter, M.; Griesinger, C.; Jovin, T. M.; Fernandez, C. O. Proc. Natl. Acad. Sci. U S A 2005, 102 (12), 4294.

    20. [20]

      (20) Binolfi, A.; Lamberto, G. R.; Duran, R.; Quintanar, L.; Bertoncini, C.W.; Souza, J. M.; Cervenansky, C.; Zweckstetter, M.; Griesinger, C.; Fernandez, C. O. J. Am. Chem. Soc. 2008, 130 (35), 11801.

    21. [21]

      (21) Jackson, M. S.; Lee, J. C. Inorg. Chem. 2009, 48 (19), 9303.

    22. [22]

      (22) Luk, K. C.; Mills, I. P.; Trojanowski, J. Q.; Lee, V. M. Biochemistry 2008, 47 (47), 12614.

    23. [23]

      (23) Drew, S. C.; Leong, S. L.; Pham, C. L.; Tew, D. J.; Masters, C. L.; Miles, L. A.; Cappai, R.; Barnham, K. J. Am. Chem. Soc. 2008, 130 (24), 7766.

    24. [24]

      (24) Wang, J. H.; Cao, Z. X.; Li, S. Q. Curr. Comput. -Aided Drug Des. 2009, 5 (4), 280.

    25. [25]

      (25) Sung, Y. H.; Rospigliosi, C.; Eliezer, D. Biochim. Biophys Acta 2006, 1764 (1), 5.

    26. [26]

      (26) Kowalik-Jankowska, T.; Rajewska, A.; Jankowska, E.; Grzonka, Z. Dalton Trans. 2006, 42, 5068.

    27. [27]

      (27) McCammon, J. A.; Gelin, B. R.; Karplus, M. Nature 1977, 267 (5612), 585.

    28. [28]

      (28) Daggett, V.; Kollman, P. A.; Kuntz, I. D. Biopolymers 1991, 31 (3), 285.

    29. [29]

      (29) Karplus, M.; Petsko, G. A. Nature 1990, 347 (6294), 631.

    30. [30]

      (30) Tsigelny, I. F.; Bar-On, P.; Sharikov, Y.; Crews, L.; Hashimoto, M.; Miller, M. A.; Keller, S. H.; Platoshyn, O.; Yuan, J. X.; Masliah, E. Federation of European Biochemical Societies Journal 2007, 274 (7), 1862.

    31. [31]

      (31) Riihimaki, E. S.; Martinez, J. M.; Kloo, L. J. Phys. Chem. B 2007, 111 (35), 10529.

    32. [32]

      (32) Cao, Z. X.; Liu, L.;Wang, J. H. J. Biomol. Struct. Dyn. 2010, 28 (3), 343.

    33. [33]

      (33) Kowalik-Jankowska, T.; Rajewska, A.;Wisniewska, K.; Grzonka, Z.; Jezierska, J. J. Inorg. Biochem. 2005, 99 (12), 2282.

    34. [34]

      (34) Ulmer, T. S.; Bax, A.; Cole, N. B.; Nussbaum, R. L. J. Biol. Chem. 2005, 280 (10), 9595.

    35. [35]

      (35) Binolfi, A.; Rodriguez, E. E.; Valensin, D.; D'Amelio, N.; Ippoliti, E.; Obal, G.; Duran, R.; Magistrato, A.; Pritsch, O.; Zweckstetter, M.; Valensin, G.; Carloni, P.; Quintanar, L.; Griesinger, C.; Fernandez, C. O. Inorg. Chem. 2010, 49 (22), 10668.

    36. [36]

      (36) van der Spoel, D.; van Drunen, R.; Berendsen, H. J. C. Groningen Machine for Chemical Simulations, Department of Biophysical Chemistry, BIOSON Research Institute: Nijenborgh 4 NL-9717 AG Groningen, 1994.

    37. [37]

      (37) Daura, X.; Mark, A. E.; van Gunsteren,W. F. J. Comput. Chem. 1998, 19 (5), 535.

    38. [38]

      (38) van Gunsteren,W. F.; Billeter, S. R.; Eising, A. A.; Hunenberger, P. H.; Krüger, P.; Mark, A. E.; Scott,W. R. P.; Tironi, I. G. Eds. Biomolecular Simulation: The GROMOS96 Manual and User Guide; Zürich, Switzerland: Hochschulverlag AG an der ETH Zürich. 1996.

    39. [39]

      (39) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren,W. F.; Hermans, J. Intermolecular Forces; Pullman, B. Ed.; Reidel: Dordrecht, 1981; p331.

    40. [40]

      (40) Tironi, I. G.; Sperb, R.; Smith, P. E.; van Gunsteren,W. F. J. Chem. Phys. 1995, 102 (13), 5451.

    41. [41]

      (41) Smith, P. E.; van Gunsteren,W. F. J. Chem. Phys. 1994, 100 (4), 3169.

    42. [42]

      (42) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren,W. F.; Dinola, A.; Haak, J. R. J. Chem. Phys. 1984, 81 (8), 3684.

    43. [43]

      (43) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23 (3), 327.

    44. [44]

      (44) Hu, H.; Elstner, M.; Hermans, J. Proteins 2003, 50 (3), 451.

    45. [45]

      (45) Frishman, D.; Ar s, P. Proteins 1995, 23 (4), 566.

    46. [46]

      (46) Heinig, M.; Frishman, D. Nucleic Acids Res. 2004, 32,W500.

    47. [47]

      (47) Apetri, M. M.; Maiti, N. C.; Za rski, M. G.; Carey, P. R.; Anderson, V. E. J. Mol. Biol. 2006, 355 (1), 63.

    48. [48]

      (48) Heise, H.; Hoyer,W.; Becker, S.; Andronesi, O. C.; Riedel, D.; Baldus, M. Proc. Natl. Acad Sci. U S A, 2005, 102 (44), 15871.

    49. [49]

      (49) Maiti, N. C.; Apetri, M. M.; Za rski, M. G.; Carey, P. R.; Anderson, V. E. J. Am. Chem. Soc. 2004, 126 (8), 2399.

    50. [50]

      (50) Croke, R. L.; Sallum, C. O.;Watson, E.;Watt, E. D.; Alexandrescu, A. T. Protein Sci. 2008, 17 (8), 1434.

    51. [51]

      (51) Waxman, E. A.; Mazzulli, J. R.; Giasson, B. I. Biochemistry 2009, 48 (40), 9427.

    52. [52]

      (52) Pronchik, J.; He, X.; Giurleo, J. T.; Talaga, D. S. J. Am. Chem. Soc. 2010, 132 (28), 9797.

    53. [53]

      (53) Wang, X.; Moualla, D.;Wright, J. A.; Brown, D. R. J. Neurochem. 2010, 113 (3), 704.

  • 加载中
    1. [1]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    2. [2]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    3. [3]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    4. [4]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    14. [14]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    15. [15]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    16. [16]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    17. [17]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    18. [18]

      Yan Su Yuzhen Pan Fuping Tian Xiuyun Wang Tieqi Xu Yongce Zhang Miao Cui Wenfeng Jiang . Construction and Practice of the National Chemical Experimental Teaching Demonstration Center under the Background of Digital Education. University Chemistry, 2024, 39(7): 218-222. doi: 10.12461/PKU.DXHX202406001

    19. [19]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    20. [20]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

Metrics
  • PDF Downloads(1376)
  • Abstract views(2379)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return