Citation: CAO Jian, CAO Zan-Xia, ZHAO Li-Ling, WANG Ji-Hua. Effect of α-Synuclein (1-17) Peptide for Cu2+-Bound and Metal-Free Forms by Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 479-488. doi: 10.3866/PKU.WHXB201111231
-
The Cu2+-bound and metal-free α-synuclein (1-17) peptides were simulated with the GROMOS 43A1 force field in the GROMACS package. There were six groups and each group was run for 500 ns in the physiological environment, giving a total of 3 μs. It was found that the Cu2+-bound α-synuclein (1-17) peptide contained more unfluctuating secondary structure samples and more β-conformations than the metal-free α-synuclein (1-17) peptide. Simulations indicate that the Cu2+-bound α-synuclein (1-17) peptide prefers conformations that allow larger solvent exposure of hydrophobic residues than the metal-free α-synuclein (1-17) peptide, which provides underlying evidence for why Cu2+ promotes the aggregation of α-synuclein. By mapping the free energy surface landscape, we found that conformations of Cu2+-bound α-synuclein (1-17) peptide distribute more compactly than the metal-free α-synuclein (1-17) peptide. The results are almost the same as the central conformation obtained by conformational clustering analysis. These new findings indicate that Cu2+ modulates the conformation of α-synuclein from intrinsic disorder to order, which is central to the conformational dynamic and thermodynamic properties of the Cu2+-bound and metal-free α-synuclein (1-17) peptides at the molecular level. This work is propitious to understanding the mechanisms of Cu2+ participation in the fibrillization of α-synuclein.
-
-
[1]
(1) Singleton, A. B.; Farrer, M.; Johnson, J.; Singleton, A.; Hague, S.; Kachergus, J.; Hulihan, M.; Peuralinna, T.; Dutra, A.; Nussbaum, R.; Lincoln, S.; Crawley, A.; Hanson, M.; Maraganore, D.; Adler, C.; Cookson, M. R.; Muenter, M.; Baptista, M.; Miller, D.; Blancato, J.; Hardy, J.; Gwinn-Hardy, K. Science 2003, 302 (5646), 841.
-
[2]
(2) Kruger, R.; Kuhn,W.; Muller, T.;Woitalla, D.; Graeber, M.; Kosel, S.; Przuntek, H.; Epplen, J. T.; Schols, L.; Riess, O. Nat. Genet. 1998, 18 (2), 106.
-
[3]
(3) Volles, M. J.; Lansbury, P. T. Jr. Biochemistry 2003, 42 (26), 7871.
-
[4]
(4) Zarranz, J. J.; Alegre, J.; mez-Esteban, J. C.; Lezcano, E.; Ros, R.; Ampuero, I.; Vidal, L.; Hoenicka, J.; Rodriguez, O.; Atares, B.; Llorens, V.; mez-Tortosa, E.; del Ser, T.; Munoz, D. G.; de Yebenes, J. G. Ann. Neurol. 2004, 55 (2), 164.
-
[5]
(5) Giasson, B. I.; Murray, I. V.; Trojanowski, J. Q.; Lee, V. M. J. Biol. Chem. 2001, 276 (4), 2380.
-
[6]
(6) Bodner, C. R.; Maltsev, A. S.; Dobson, C. M.; Bax, A. Biochemistry 2010, 49 (5), 862.
-
[7]
(7) Hoyer,W.; Cherny, D.; Subramaniam, V.; Jovin, T. M. M. Biochemistry 2004, 43 (51), 16233.
-
[8]
(8) Dunker, A. K.; Brown, C. J.; Lawson, J. D.; Iakoucheva, L. M.; Obradovic, Z. Biochemistry 2002, 41 (21), 6573.
-
[9]
(9) Huang,Y. Q.; Liu, Z. R. Acta Phys. -Chim. Sin. 2010, 26 (8), 2061. [黄永棋, 刘志荣. 物理化学学报, 2010, 26 (8), 2061.]
-
[10]
(10) Bertoncini, C.W.; Jung, Y. S.; Fernandez, C. O.; Hoyer,W.; Griesinger, C.; Jovin, T. M.; Zweckstetter, M. Proc. Natl. Acad. Sci. U S A 2005, 102 (5), 1430.
-
[11]
(11) Dedmon, M. M.; Lindorff-Larsen, K.; Christodoulou, J.; Vendruscolo, M.; Dobson, C. M. J. Am. Chem. Soc. 2005, 127 (2), 476.
-
[12]
(12) Spillantini, M. G.; Crowther, R. A.; Jakes, R.; Hasegawa, M.; edert, M. Proc. Natl. Acad. Sci. U S A 1998, 95 (11), 6469.
-
[13]
(13) Masliah, E.; Rockenstein, E.; Veinbergs, I.; Mallory, M.; Hashimoto, M.; Takeda, A.; Sagara, Y.; Sisk, A.; Mucke, L. Science 2000, 287 (5456), 1265.
-
[14]
(14) Allsop, D.; Mayes, J.; Moore, S.; Masad, A.; Tabner, B. J Biochem. Soc. Trans. 2008, 36, 1293.
-
[15]
(15) Paik, S. R.; Shin, H. J.; Lee, J. H.; Chang, C. S.; Kim, J. Biochem. J. 1999, 340, 821.
-
[16]
(16) Davies, P.;Wang, X.; Sarell, C. J.; Drewett, A.; Marken, F.; Viles, J. H.; Brown, D. R. Biochemistry 2010, 50 (1), 37.
-
[17]
(17) rell, J. M.; Johnson, C. C.; Rybicki, B. A.; Peterson, E. L.; Kortsha, G. X.; Brown, G. G.; Richardson, R. J. Neurotoxicology 1999, 20, 239.
-
[18]
(18) Pall, H. S.;Williams, A. C.; Blake, D. R.; Lunec, J.; Gutteridge, J. M.; Hall, M.; Taylor, A. Lancet 1987, 2, 238.
-
[19]
(19) Rasia, R. M.; Bertoncini, C.W.; Marsh, D.; Hoyer,W.; Cherny, D.; Zweckstetter, M.; Griesinger, C.; Jovin, T. M.; Fernandez, C. O. Proc. Natl. Acad. Sci. U S A 2005, 102 (12), 4294.
-
[20]
(20) Binolfi, A.; Lamberto, G. R.; Duran, R.; Quintanar, L.; Bertoncini, C.W.; Souza, J. M.; Cervenansky, C.; Zweckstetter, M.; Griesinger, C.; Fernandez, C. O. J. Am. Chem. Soc. 2008, 130 (35), 11801.
-
[21]
(21) Jackson, M. S.; Lee, J. C. Inorg. Chem. 2009, 48 (19), 9303.
-
[22]
(22) Luk, K. C.; Mills, I. P.; Trojanowski, J. Q.; Lee, V. M. Biochemistry 2008, 47 (47), 12614.
-
[23]
(23) Drew, S. C.; Leong, S. L.; Pham, C. L.; Tew, D. J.; Masters, C. L.; Miles, L. A.; Cappai, R.; Barnham, K. J. Am. Chem. Soc. 2008, 130 (24), 7766.
-
[24]
(24) Wang, J. H.; Cao, Z. X.; Li, S. Q. Curr. Comput. -Aided Drug Des. 2009, 5 (4), 280.
-
[25]
(25) Sung, Y. H.; Rospigliosi, C.; Eliezer, D. Biochim. Biophys Acta 2006, 1764 (1), 5.
-
[26]
(26) Kowalik-Jankowska, T.; Rajewska, A.; Jankowska, E.; Grzonka, Z. Dalton Trans. 2006, 42, 5068.
-
[27]
(27) McCammon, J. A.; Gelin, B. R.; Karplus, M. Nature 1977, 267 (5612), 585.
-
[28]
(28) Daggett, V.; Kollman, P. A.; Kuntz, I. D. Biopolymers 1991, 31 (3), 285.
-
[29]
(29) Karplus, M.; Petsko, G. A. Nature 1990, 347 (6294), 631.
-
[30]
(30) Tsigelny, I. F.; Bar-On, P.; Sharikov, Y.; Crews, L.; Hashimoto, M.; Miller, M. A.; Keller, S. H.; Platoshyn, O.; Yuan, J. X.; Masliah, E. Federation of European Biochemical Societies Journal 2007, 274 (7), 1862.
-
[31]
(31) Riihimaki, E. S.; Martinez, J. M.; Kloo, L. J. Phys. Chem. B 2007, 111 (35), 10529.
-
[32]
(32) Cao, Z. X.; Liu, L.;Wang, J. H. J. Biomol. Struct. Dyn. 2010, 28 (3), 343.
-
[33]
(33) Kowalik-Jankowska, T.; Rajewska, A.;Wisniewska, K.; Grzonka, Z.; Jezierska, J. J. Inorg. Biochem. 2005, 99 (12), 2282.
-
[34]
(34) Ulmer, T. S.; Bax, A.; Cole, N. B.; Nussbaum, R. L. J. Biol. Chem. 2005, 280 (10), 9595.
-
[35]
(35) Binolfi, A.; Rodriguez, E. E.; Valensin, D.; D'Amelio, N.; Ippoliti, E.; Obal, G.; Duran, R.; Magistrato, A.; Pritsch, O.; Zweckstetter, M.; Valensin, G.; Carloni, P.; Quintanar, L.; Griesinger, C.; Fernandez, C. O. Inorg. Chem. 2010, 49 (22), 10668.
-
[36]
(36) van der Spoel, D.; van Drunen, R.; Berendsen, H. J. C. Groningen Machine for Chemical Simulations, Department of Biophysical Chemistry, BIOSON Research Institute: Nijenborgh 4 NL-9717 AG Groningen, 1994.
-
[37]
(37) Daura, X.; Mark, A. E.; van Gunsteren,W. F. J. Comput. Chem. 1998, 19 (5), 535.
-
[38]
(38) van Gunsteren,W. F.; Billeter, S. R.; Eising, A. A.; Hunenberger, P. H.; Krüger, P.; Mark, A. E.; Scott,W. R. P.; Tironi, I. G. Eds. Biomolecular Simulation: The GROMOS96 Manual and User Guide; Zürich, Switzerland: Hochschulverlag AG an der ETH Zürich. 1996.
-
[39]
(39) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren,W. F.; Hermans, J. Intermolecular Forces; Pullman, B. Ed.; Reidel: Dordrecht, 1981; p331.
-
[40]
(40) Tironi, I. G.; Sperb, R.; Smith, P. E.; van Gunsteren,W. F. J. Chem. Phys. 1995, 102 (13), 5451.
-
[41]
(41) Smith, P. E.; van Gunsteren,W. F. J. Chem. Phys. 1994, 100 (4), 3169.
-
[42]
(42) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren,W. F.; Dinola, A.; Haak, J. R. J. Chem. Phys. 1984, 81 (8), 3684.
-
[43]
(43) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23 (3), 327.
-
[44]
(44) Hu, H.; Elstner, M.; Hermans, J. Proteins 2003, 50 (3), 451.
-
[45]
(45) Frishman, D.; Ar s, P. Proteins 1995, 23 (4), 566.
-
[46]
(46) Heinig, M.; Frishman, D. Nucleic Acids Res. 2004, 32,W500.
-
[47]
(47) Apetri, M. M.; Maiti, N. C.; Za rski, M. G.; Carey, P. R.; Anderson, V. E. J. Mol. Biol. 2006, 355 (1), 63.
-
[48]
(48) Heise, H.; Hoyer,W.; Becker, S.; Andronesi, O. C.; Riedel, D.; Baldus, M. Proc. Natl. Acad Sci. U S A, 2005, 102 (44), 15871.
-
[49]
(49) Maiti, N. C.; Apetri, M. M.; Za rski, M. G.; Carey, P. R.; Anderson, V. E. J. Am. Chem. Soc. 2004, 126 (8), 2399.
-
[50]
(50) Croke, R. L.; Sallum, C. O.;Watson, E.;Watt, E. D.; Alexandrescu, A. T. Protein Sci. 2008, 17 (8), 1434.
-
[51]
(51) Waxman, E. A.; Mazzulli, J. R.; Giasson, B. I. Biochemistry 2009, 48 (40), 9427.
-
[52]
(52) Pronchik, J.; He, X.; Giurleo, J. T.; Talaga, D. S. J. Am. Chem. Soc. 2010, 132 (28), 9797.
-
[53]
(53) Wang, X.; Moualla, D.;Wright, J. A.; Brown, D. R. J. Neurochem. 2010, 113 (3), 704.
-
[1]
-
-
[1]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[2]
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073
-
[3]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[4]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[5]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[6]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[7]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[8]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[9]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[10]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[11]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[12]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[13]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[14]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[15]
Simin Fang , Hong Wu , Wei Liu , Wei Wei , Hongyan Feng , Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053
-
[16]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[17]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[18]
Yan Su , Yuzhen Pan , Fuping Tian , Xiuyun Wang , Tieqi Xu , Yongce Zhang , Miao Cui , Wenfeng Jiang . Construction and Practice of the National Chemical Experimental Teaching Demonstration Center under the Background of Digital Education. University Chemistry, 2024, 39(7): 218-222. doi: 10.12461/PKU.DXHX202406001
-
[19]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[20]
Yanxin Wang , Hongjuan Wang , Yuren Shi , Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005
-
[1]
Metrics
- PDF Downloads(1376)
- Abstract views(2380)
- HTML views(2)