Citation: LEI Qing-Juan, GAO Bao-Jiao, ZHANG Zheng-Guo. Action Mechanism of Secondary Bond Forces on Chemical Immobilization of Horseradish Peroxidase[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2697-2704. doi: 10.3866/PKU.WHXB20111122 shu

Action Mechanism of Secondary Bond Forces on Chemical Immobilization of Horseradish Peroxidase

  • Received Date: 27 June 2011
    Available Online: 13 September 2011

    Fund Project: 山西省自然科学基金(201002100843)资助项目 (201002100843)

  • Glycidyl methacrylate (GMA) was graft-polymerized onto micron-sized silica gel particles. Ethylenediamine (EDA) was bonded to the surfaces of PGMA/SiO2 particles by the ring-opening reaction of epoxy groups resulting in the difunctional composite carrier, EDA-PGMA/SiO2, which was used for enzyme immobilization. We immobilized horseradish peroxidase (HRP) using the chemical bonding method. In this work, the effects and action mechanisms of two secondary bond forces, electrostatic interaction and hydrophobic interaction, on the enzyme immobilization were investigated. The experimental results show that the protonated amino groups on the EDA-PGMA/SiO2 particles enable the carrier particles to be positively charged and the zeta potential of the carrier particles are positive over a wider range of pH values. At a pH value of 8.5 for the medium, which is higher than the isoelectric point of HRP, the strong electrostatic interaction between the enzyme protein and the carrier significantly promotes the immobilization of HRP. For the carrier with an EDA bonding rate of about 30%, the strongest electrostatic interaction was observed between the enzyme protein and the carrier while the immobilized enzyme has the highest coupling rate and specific activity. Hydrophobic interaction between the enzyme protein and the carrier also affects HRP immobilization greatly. As the grafted particles PGMA/SiO2 are used as the carrier, the addition of NaCl electrolyte will facilitate the hydrophobic interaction between the enzyme protein and the carrier and it will result in an increase in the coupling rate and specific activity of the immobilized enzyme.
  • 加载中
    1. [1]

      (1) Cheng, J.; Yu, S. M.; Zuo, P. Water Research 2006, 40, 283.  

    2. [2]

      (2) Vasileva, N.; djevar va, T.; Ivanova, D.; Gabrovska, K. International Journal of Biological Macromolecules 2009, 44, 190.  

    3. [3]

      (3) Li, F.; Chen,W.; Tang, C. F.; Zhang, S. S. Talanta 2009, 77, 1304.  

    4. [4]

      (4) Wang, B.; Zhang, J. J.; Pan, Z.Y.; Tao, X. Q.;Wang, H. S. Biosensors and Bioelectronics 2009, 24, 1141.  

    5. [5]

      (5) Zhang, J. B.; Ye, P.; Chen, S.;Wang,W. J. International Biodeterioration and Biodegradation 2007, 59, 307.  

    6. [6]

      (6) Lai, Y. C.; Lin, S. C. Process Biochemistry 2005, 40, 1167.  

    7. [7]

      (7) Alemzadeh, I.; Nejati, S. Journal of Hazardous Materials 2009, 166, 1082.  

    8. [8]

      (8) Zhang, F.; Zheng, B.; Zhang, J. L.; Huang, X. L.; Liu, H.; Guo, S.W.; Zhang, J. Y. Journal of Physical Chemistry C 2010, 114, 8469.  

    9. [9]

      (9) Bayramoglu, G.; Arica, M. Y. Journal of Hazardous Materials 2008, 156, 148.  

    10. [10]

      (10) Dalal, S.; Gupta, M. N. Chemosphere 2007, 67, 741.  

    11. [11]

      (11) Bayramo?lu, G.; Akgöl, S.; Bulut, A.; Denizli, A.; Arica, M. Y. Biochemical Engineering Journal 2003, 14, 117.  

    12. [12]

      (12) Ar?ca, M. Y.; Bayramo?lu, G.; Bibak, N. Process Biochemistry 2004, 39, 2007.  

    13. [13]

      (13) Hou, X. H.; Liu, B. L.; Deng, X. B.; Zhang, B. T.; Chen, H. L.; Luo, R. Analytical Biochemistry 2007, 368, 100.  

    14. [14]

      (14) Mileti?, N.; Vukovi?, Z.; Nastasovi?, A.; Loos, K. Journal of Molecular Catalysis B: Enzymatic 2009, 56, 196.  

    15. [15]

      (15) Kartal, F.; Akkaya, A.; Kilinc, A. Journal of Molecular Catalysis B: Enzymatic 2009, 57, 55.  

    16. [16]

      (16) Chen, C. I.; Chen, C.W.; Huang, C.W.; Liu, Y. C. Journal of Membrane Science 2007, 298, 24.  

    17. [17]

      (17) Mateo, C.; Torres, R.; Fernandez-Lafuente, G.; Ortiz, C.; Fuentes, M.; Hidal , A.; Lopez-Galle , F.; Abian, O.; Abian, F. O.; Palomo, J. M.; Betancor, L.; Pessela, B. C. C.; Guisan, J. M.; Fernandez-Lafuente, R. Biomacromolecules 2003, 4, 772.  

    18. [18]

      (18) Grazú, V.; Abian, O.; Mateo, C.; Batista-Viera, F.; Fernandez- Lafuente, R.; Guisán, J. M. Biomacromolecules 2003, 4, 1495.  

    19. [19]

      (19) Pessela, B. C. C.; Mateo, C.; Carrascosa, A. V.; Vian, A.; García, J. L.; Rivas, G.; Alfonso, C.; Guisan, J. M.; Fernandez- Lafuente, R. Biomacromolecules 2003, 4, 107.  

    20. [20]

      (20) Mateo, C.; Fernández-Lorente, G.; Cortés, E.; Garcia, J. L.; Fernández-Lafuente, R.; Guisan, J. M. Biotechnology and Bioengineering 2001, 76, 269.  

    21. [21]

      (21) Torres, R.; Mateo, C.; Fernández-Lorente, G.; Ortiz, C.; Fuentes, M.; Palomo, J. M.; Guisan, J. M. Fernández-Lafuente, R. Biotechnology Progress 2003, 19, 1056.  

    22. [22]

      (22) Mateo, C.; Fernández-Lorente, G.; Abian, O.; Fernández- Lafuente, R.; Guisán. J. M. Biomacromolecules 2000, 1, 739.  

    23. [23]

      (23) Yusdy.; Patel, S. R.; Yap, M. G. S.;Wang, D. I. C. Biochemical Engineering Journal 2009, 48, 13.  

    24. [24]

      (24) Hernandez, K.; Hernandez, K.; Fernandez-Lafuente, R.. Enzyme and Microbial Technology 2011, 48, 107.  

    25. [25]

      (25) Jiang, G. M.; Gao, B. J.; Zhang, R. X. J. Func. Poly 2010, 23, 256. [姜桂明, 高保娇, 张瑞霞. 功能高分子学报, 2010, 23, 256.]

    26. [26]

      (26) Nicell, J. A.;Wright, H. Enzyme and Microbial Technology 1997, 21, 302.  

    27. [27]

      (27) Schultza, N.; Metreveli, G.; Franzreb, M.; Frimmel, F. H.; Syldatk, C. Colloids and Surfaces B: Biointerfaces 2008, 66, 39.  

    28. [28]

      (28) Talukder, M. M. R.; Tamalampudy, S.; Li C. J.; Yanglin, L.;Wu, J.; Kondo, A.; Fukuda, H. Biochemical Engineering Journal 2007, 33, 60

    29. [29]

      (29) Tsumoto, K.; Ejima, D.; Senczuk, A. M.; Kita, Y.; Arakawa, T. J. Pharm. Sci. 2007, 96, 1677.  

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    8. [8]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    10. [10]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    13. [13]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    14. [14]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    15. [15]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    20. [20]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

Metrics
  • PDF Downloads(873)
  • Abstract views(2786)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return