Citation: TONG Hai-Jie, QIAN Zheng-Gang, REID Jonathan P., ZHANG Yun-Hong. High Temporal and Spatial Resolution Measurements of the Rapid Efflorescence of Sea Salt Droplets[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2521-2527. doi: 10.3866/PKU.WHXB20111121 shu

High Temporal and Spatial Resolution Measurements of the Rapid Efflorescence of Sea Salt Droplets

  • Received Date: 2 June 2011
    Available Online: 13 September 2011

    Fund Project: 国家自然科学基金(20933001, 20873006)资助项目 (20933001, 20873006)

  • The rapid efflorescence of individual seawater droplets on polytetrafluoroethylene (PTFE, hydrophobic) and quartz (hydrophilic) substrates was investigated using a high-speed camera for imaging and micro-Raman spectroscopy to spatially resolve the particle composition. The morphology of the evaporating sea salt particles was captured using millisecond time resolution and micrometer spatial resolution. Upon rapid desiccation with dry N2 on a quartz substrate, Na2Ca5(SO4)6·3H2O and Na2xCa6-x(SO4)6· 3H2O (0<x<1) crystallized first followed by NaCl and finally KMgCl3·6H2O. We determined the formation behavior of the mixed sodium-calcium salts as crystallization products during the quick desiccation process and CaSO4·2H2O during the slow desiccation process. In addition, the crystallization location of different crystal products were identified and the growth speed of Na2Ca5(SO4)6·3H2O crystal was compared with that of CaSO4·2H2O crystal. Moreover, sea salt particles with a hollow structure were observed on the PTFE substrate at the end of the quick efflorescence process.
  • 加载中
    1. [1]

      (1) Fitzgerald, J.W. Atmos. Environ. 1991, 25A, 533.

    2. [2]

      (2) O'Dowd, C. D.; De Leeuw, G. Phil. Trans. Roy. Soc. A 2007, 365, 1753.  

    3. [3]

      (3) O'Dowd, C. D.; Smith, M. H.; Consterdine, I. E.; Lowe, J. A. Atmos. Environ. 1997, 31, 73.  

    4. [4]

      (4) Murphy, D. M.; Anderson, J. R.; Quinn, P. K.; McInnes, L. M.; Brechtel, F. J.; Kreidenweis, S. M.; Middlebrook, A. M.; Pósfai, M.; Thomson, D. S.; Buseck, P. R. Nature 1998, 392, 62.  

    5. [5]

      (5) Latham, J.; Smith, M. H. Nature 1990, 347, 372.  

    6. [6]

      (6) Laskin, A.; Gasper, D. J.;Wang,W.; Hunt, S.W.; Cowin, J. P.; Colson, S. D.; Finlayson-Pitts, B. J. Science 2003, 301, 340.

    7. [7]

      (7) De Haan, D. O.; Brauers, T.; Oum, K.; Stutz, J.; Nordmeyer, T.; Finlayson-Pitts, B. J. Int. Rev. Phys. Chem. 1999, 18, 343.  

    8. [8]

      (8) Lewis, E. R.; Schwartz, S. E. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models; American Geophysical Union:Washington, D. C., 2004; pp 1-36.

    9. [9]

      (9) Tang, I. N.; Tridico, A. C.; Fung, K. H. J. Geophys. Res. 1997, 102, 23269.  

    10. [10]

      (10) Cheng, R. J.; Blanchard, D. C.; Cipriano, R. J. Atmos. Res. 1988, 22, 15.

    11. [11]

      (11) Cheng, R. J. Atmos. Aer. Nuc. 1988, 309, 589.  

    12. [12]

      (12) Harvie, C. E.;Weare, J. H.; Hardie, L.W.; Eugster, H. P. Science 1980, 208, 498.  

    13. [13]

      (13) Psófai, M.; Buseck, P. R. Annu. Rev. Earth Planet. Sci. 2010, 38, 17.  

    14. [14]

      (14) Ma, Y. T.; Xia, S. P.; Gao, S. Y. Acta Phys. -Chim. Sin. 2001, 17 (11), 1021. [马玉涛, 夏树屏, 高世扬. 物理化学学报, 2001, 17(11), 1021.]

    15. [15]

      (15) Wang, F.; Zhao, L. J.; Zhang, Y. H. Chin. Sci. Bull. 2008, 53 (14), 2139. [王枫, 赵利军, 张韫宏. 科学通报, 2008, 53 (14), 2139.]

    16. [16]

      (16) Xiao, H. S.; Dong, J. L.;Wang, L. Y.; Zhao, L. J.;Wang, F.; Zhang, Y. H. Environ. Sci. Technol. 2008, 42, 8698.  

    17. [17]

      (17) Freyer, D.; Voigt,W. Mon. Chem. 2003, 134, 693.

    18. [18]

      (18) Voigt,W. Pure Appl. Chem. 2001, 73, 831.  

    19. [19]

      (19) Yeung, M. C.; Chan, C. K. Aerosol Sci. Technol. 2010, 44, 269.  

    20. [20]

      (20) Liu, Y. J.; Zhu, T.; Zhao, D. F.; Zhang, Z. F. Atmos. Chem. Phys. 2008, 8, 7205.  

    21. [21]

      (21) Hiratsuka, K.; Bohno, A.; Endo, H. J. Phys.: Conf. Ser. 2007, 89, 012012.  

    22. [22]

      (22) Braun, C.; Krieger, U. K. Opt. Express 2001, 8, 314.  

    23. [23]

      (23) Cziczo, D. J.; Nowak, J. B.; Hu, J. H.; Abbatt, J. P. D. J. Geophys. Res. 1997, 102, 18843.  

    24. [24]

      (24) Zhao, L. J.; Zhang, Y. H.;Wei, Z. F.; Cheng, H.; Li, X. H. J. Phys. Chem. A 2006, 110, 951.  

    25. [25]

      (25) Ross, S. D. Inorganic infrared and Raman Spectra. McGraw- Hill: London, 1972; pp 140.

    26. [26]

      (26) Reisdorf, K.; Abriel,W. Neues Jahrb. Mineral.-Abh. 1987, 157, 35.

    27. [27]

      (27) Freyer, D.; Fischer, S.; Köhnke, K.; Voigt,W. Solid State Ionics 1997, 96, 29.  

    28. [28]

      (28) Freyer, D.; Reck, G.; Bremer, M.; Voigt,W. Mon. Chem. 1999, 130, 1179.

    29. [29]

      (29) Hill, A. F.;Wills, J. H. J. Am. Chem. Soc. 1938, 60, 1647.  

    30. [30]

      (30) Mees, F.; Hatert, F.; Rowe, R. Mineral. Mag. 2008, 72, 1307.  

    31. [31]

      (31) Bensted, J. J. Am. Ceram. Soc. 1976, 59, 140.  

    32. [32]

      (32) Kosztolanyi, C.; Mullis, J.;Weidmann, M. Chem. Geol. 1987, 61, 19.  

    33. [33]

      (33) Chang, H.; Huang, P. J.; Hou, S. C. Mater. Chem. Phys. 1999, 58, 12.  

    34. [34]

      (34) Prasad, P. S. R.; Pradhan A.; wd, T. N. Curr. Sci. 2001, 80, 1203.

    35. [35]

      (35) Liu, Y. M.;Wang, A.; Freeman, J. J. Raman, MIR, and NIR Spectroscopic Study of Calcium sulfates: Gypsum, bassanite, and anhydrite. In Lunar and Planetary Science XL, 40th Lunar and Planetary Science Conference,Woodlands, Texas, March 23-27, 2009.

    36. [36]

      (36) Oetzel, M.; Heger, G.; Koslowski, T. ZKG Int. 2000, 53, 354.

    37. [37]

      (37) Kuzel, H. J.; Hauner, M. ZKG Int. 2000, 53, 354.

    38. [38]

      (38) Bushuev, N. N. Zh. Neorg. Khim. 1982, 27, 610.

    39. [39]

      (39) Abriel,W.; Nesper, R. Z. Kristall. 1993, 205, 99.  

    40. [40]

      (40) Chemtob, S. M.; Arvidson, R. E.; Fernández-Remolar D. C. et al. Identification of hydrated sulfates collected in the northern Rio Tinto valley by reflectance and Raman spectroscopy. In Lunar and Planetary Science XXXVII, 37th Lunar and Planetary Science Conference, League City, Texas, March 13-17, 2006.

    41. [41]

      (41) Abramoff, M. D.; Magelhaes, P. J.; Ram, S. J. Biophotonics Int. 2004, 11 (7), 36.

    42. [42]

      (42) Van Driessche, A. E. S.; Garcia-Ruiz, J. M.; Delgado-Lopez, J. M.; Sazaki, G. Cryst. Growth Des. 2010, 10 (9), 3909.

  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    4. [4]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    5. [5]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    6. [6]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    7. [7]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    8. [8]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    9. [9]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    10. [10]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    11. [11]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    12. [12]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

Metrics
  • PDF Downloads(895)
  • Abstract views(1928)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return