Citation: HOU Hai-Yun, HUANG Yin-Rong, WANG Sheng-Ze, BAI Bo-Feng. Preparation and Physicochemical Properties of Imidazolium Acetates and the Conductivities of Their Aqueous and Ethanol Solutions[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2512-2520. doi: 10.3866/PKU.WHXB20111120 shu

Preparation and Physicochemical Properties of Imidazolium Acetates and the Conductivities of Their Aqueous and Ethanol Solutions

  • Received Date: 29 July 2011
    Available Online: 7 September 2011

    Fund Project: 西安工程大学科研启动基金(BS0704) (BS0704)西安工程大学研究生创新基金(chx110944)资助项目 (chx110944)

  • The ionic liquids 1-methylimidazolium acetate ([Mim]Ac), 1,3-dimethylimidazolium acetate ([Mmim]Ac), and 1-ethyl-3-methylimidazolium acetate ([Emim]Ac) were prepared and their densities, conductivities, and absolute viscosities were measured at temperatures ranging from 293.15 to 338.14 K. Their corresponding molar conductivities and kinematic viscosities were also calculated. The dependence of densities, conductivities, molar conductivities, absolute viscosities, and kinematic viscosities on temperature were obtained using the least-squares method. The influence of the alkyl chains at the 3-position N atom of the imidazole ring on the above five physicochemical properties of these imidazolium acetates were discussed. The conductivities of binary solutions of [Mim]Ac {or [Mmim]Ac or [Emim]Ac} (1)- H2O (or EtOH) (2) were measured for a full set of mole fractions and the corresponding molar conductivities of the three imidazolium acetates in the six binary solutions were also calculated. In water and ethanol solutions we found that the conductivities and the molar conductivities increased initially and then decreased with an increase in the mole fraction of the imidazolium acetates. At the same concentration a longer alkyl chain at the 3-position of the imidazole ring resulted in higher conductivity and molar conductivity for the imidazolium acetates. Furthermore, the conductivities and molar conductivities of the aqueous solutions are always far higher than those of ethanol solutions.
  • 加载中
    1. [1]

      (1) Chritopher, B. J.; Duncan, B.W.; Kenneth, S. R. Chem. Commun. 1996, No. 14, 1625.  

    2. [2]

      (2) James, H. D., Jr.; Kerri, J. F.; Travis, M. Tetrahedron Letters 1998, 39, 8955.  

    3. [3]

      (3) Zhang, S. J.; Lv, X. M. Ionic Liquids: from Basic Research to Industry Applications; Science Press: Beijing, 2006; pp 33-34. [张锁江, 吕兴梅. 离子液体从基础研究到工业应用. 北京: 科学出版社, 2006: 33-34.]

    4. [4]

      (4) Zhao, J.; Dong, C. C.; Li, C. X. Fluid Phase Equilibrum 2006, 242, 147.  

    5. [5]

      (5) Wang, F. H.; Li, C. X.; Meng, H.;Wang, Z. H. Journal of Beijing University of Chemical Technology 2006, 33, 17. [王方惠, 李春喜, 孟洪, 王子镐. 北京化工大学学报, 2006, 33, 17.]

    6. [6]

      (6) Handy, S. T. Chem. -Eur. J. 2003, 9, 2938.  

    7. [7]

      (7) Liu, Q. B.; Zhang, Z. H.; Zhang, F. J. Non-Toxic Ionic Liquid, Preparation Method and Its Application. CN Patent 16 510 89, 2005-08-10. [刘庆彬, 张占辉, 张福军. 一种无毒离子液体、 制备方法及其应用: 中国, CN16 510 89 [P]. 2005-08-10.]  

    8. [8]

      (8) Wilkes, J. S.; Zaworotko, M. J. Chem. Soc. Chem. Commun. 1992, No. 13, 965.

    9. [9]

      (9) Christopher, L. S.; Adam,W.; Robin, D. A.; Asanah, R.; Steven, T. F.; Tatiana, B.; Michael, R. E. Biomacromolecules 2010, 11, 2927.  

    10. [10]

      (10) Nina, G.; Martin, H.;Werner-Michael, K.; Helmut, R. J. Phys. Chem. B 2010, 114, 12468.  

    11. [11]

      (11) Duan, X. Q.; Xu, J. G.; He, B. H.; Li, J. R.; Cheng, C. Z. New Chemical Materials 2011, 39 (Suppl. 4), 56. [段先泉, 徐纪刚, 何北海, 李军荣, 程春祖. 化工新型材料, 2011, 39 (Suppl. 4), 56.]

    12. [12]

      (12) Troshenkova, S. V.; Sashina, E. S.; Novoselov, N. P.; Arndt, K. F. Russ. J. Gen. Chem. 2010, 80, 501.  

    13. [13]

      (13) Fröba, A. P.; Rausch, M. H.; Krzeminski, K.; Assenbaum, D.; Wasserscheid, P.; Leipertz, A. Int. J. Thermophys. 2010, 31, 2059.  

    14. [14]

      (14) Evlampieva, N. P.; Vitz, J.; Schubert, U. S.; Ryumtsev, E. I. Russ. J. Gen. Chem. 2009, 82, 666.

    15. [15]

      (15) Frank,W.; Persin, Z., Karin, S. K.; Martin, R.; Volker, R.; Andreas, B.; Hans-Peter, F.; Frank, M. Cellulose 2011, 18, 1165.  

    16. [16]

      (16) Birgit, K.; Christoph, M.; Frank, M. Cellulose 2008, 15, 59.  

    17. [17]

      (17) Timothy, B. C. R.; Supratim, D.; Harvey, B.W.; Blake, S. A.; Bradley, H. M. Bioenergy Research 2010, 3, 123.  

    18. [18]

      (18) Troshenkova, S. V.; Sashina, E. S.; Novoselov, N. P.; Arndt, K. F.; Jankowsky, S. Russ. J. Gen. Chem. 2010, 80, 106.  

    19. [19]

      (19) Romain, S.; Kim, A. L.; Michael, R. E.; Tatiana, B. J. Phys. Chem. B 2010, 114, 7222.  

    20. [20]

      (20) Sebastian, F.; Sasisanker, P.; Harvey, B.W.; John Prausnitz M. J. Chem. Eng. 2011, 56, 31.

    21. [21]

      (21) Nilesh, D. R.; Hyung, K. J.; Johannes, K. J. Phys. Chem. A 2009, 113, 10397.  

    22. [22]

      (22) Bowron, D. T.; A stino, C. D.; Gladden, L. F.; Hardacre, C.; Holbrey, J. D.; Lagunas, M. C.; McGre r, J.; Mantle, M. D.; Mullan, C. L.; Youngs, T. G. A. J. Phys. Chem. B 2010, 114, 7760.  

    23. [23]

      (23) Song, H. Z.; Niu, Y. H.;Wang, Z. G.; Zhang, J. Biomacromolecules 2011, 12, 1087.

    24. [24]

      (24) Martin, G.; Kerstin, S.; Tim, L.; Thomas, H.; Tatiana, B. Biomacromolecules 2009, 10, 1188.  

    25. [25]

      (25) Cheng, N. L. Handbook of Solvents; Chemical Industry Press: Beijing, 2007; p 11. [程能林. 溶剂手册. 北京: 化学工业出版社, 2007: 11].

    26. [26]

      (26) Peter,W.; Tom,W. Ionic Liquids in Synthesis, 2nd ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Darmstadt, 2008; p 163.

    27. [27]

      (27) Smedley, S. I. The Interpretation of Ionic Conductivity in Liquids; Plenum Press: New York, 1980; p 103.  

  • 加载中
    1. [1]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    2. [2]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    3. [3]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Zhongbin Pan Shijie Huang Yunjie Luo Hongzhen Xie . Design of a Comprehensive Experiment for Determining Permanganate Index (CODMn) in Drinking Water. University Chemistry, 2024, 39(7): 354-360. doi: 10.12461/PKU.DXHX202311040

    9. [9]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    12. [12]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Cheng Rong Jiang Jiang Xinyu Zheng . Constructivism and Deconstructivism in General Chemistry Teaching: Taking the Teaching of Colloidal Solutions as an Example. University Chemistry, 2024, 39(2): 292-297. doi: 10.3866/PKU.DXHX202308035

    15. [15]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

    16. [16]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    17. [17]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(1314)
  • Abstract views(3801)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return