Citation: XU San-Kui, LI Li-Min, GUO Nan-Nan, SU Yun-Lai, . Hydrogenation of Glucose Using Ru/Activated Carbon Catalysts: Effects of Modification Methods on Surface Properties of Activated Carbon[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 177-183. doi: 10.3866/PKU.WHXB201111181 shu

Hydrogenation of Glucose Using Ru/Activated Carbon Catalysts: Effects of Modification Methods on Surface Properties of Activated Carbon

  • Received Date: 14 September 2011
    Available Online: 18 November 2011

    Fund Project: 国家自然科学基金(50955010)资助项目 (50955010)

  • Activated carbon (AC) was modified by supercritical methanol (scCH3OH) treatment, HNO3 oxidation, and HNO3 oxidation in combination with scCH3OH treatment. The pristine and modified AC samples were characterized by N2 physisorption, Boehm titration, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and transmission electron microscopy (TEM). These modifications did not significantly change the surface area and the pore size distribution of the AC. scCH3OH treatment decreased the density of surface acidic groups, especially carboxylic groups. However, HNO3 oxidation increased the density of surface acidic groups. ICP analysis revealed that the ScCH3OH modified sample had a similar adsorptive capacity for ruthenium as the original AC, while the AC oxidized with HNO3 had the highest adsorptive capacity of all samples tested. Ru/AC catalysts were prepared with RuCl3 solution impregnation on the four aforementioned AC supports. The as-prepared catalysts were characterized by TEM, XPS and examined for their effectiveness in D-glucose hydrogenation as well. The modifications drastically affected the properties of the activated carbons and the catalysts loaded on them. The dispersion of ruthenium after impregnation was highly dependent on the density of surface acidic groups. The AC sample treated by scCH3OH, which contained a lower amount of surface acidic complexes, showed the highest dispersion of ruthenium. The XPS results showed that the scCH3OH modification enhanced the interaction between AC and Ru. The Ru/AC-scCH3OH catalyst showed the highest activity for hydrogenation of D-glucose; producing a reaction rate 1.56 times higher than that produced by Ru/AC.
  • 加载中
    1. [1]

      (1) Rodriguez, R. F. Carbon 1998, 36, 159.  

    2. [2]

      (2) Figueiredo, J. L.; Pereira, M. F. R.; Freitas, M. M. A.; Orfao, J. J. M. Carbon 1999, 37, 1379.  

    3. [3]

      (3) Radovic, L. R.; Rodriguez, R. F. Carbon Materials in Catalysis. In Chemistry and Physics of Carbon, Vol. 25; Thrower, P. A. Ed.; Dekker: New York, 1997; pp 243-358.

    4. [4]

      (4) Auer, E.; Freund, A.; Pietsch, J.; Tacke, T. Appl. Catal. A 1998, 173, 259.  

    5. [5]

      (5) Hagen, S.; Barfod, R.; Fehrmann, R.; Jacobsen, C. J. H.; Teunissen, H. T.; Chorkendorff, I. B. J. Catal. 2003, 214, 327.  

    6. [6]

      (6) Coloma, F.; Sepulveda-Escribano, A.; Fierro, J. L. G.; Rodriguez-Reinoso, F. Appl. Catal. A 1997, 150, 165.  

    7. [7]

      (7) Aksoylu, A. E.; Madalena, M.; Freitas, M. A.; Fernando, M.; Pereira, R.; Figueiredo, J. L. Carbon 2001, 39, 175.  

    8. [8]

      (8) Aksoylu, A. E.; Freitas, M. A.; Figueiredo, J. L. Appl. Catal. A 2000, 192, 29.  

    9. [9]

      (9) Song,W.; Li, Y.; Guo, X. H.; Li, J.; Huang, X. M.; Shen,W. J. J. Mol. Catal. A 2010, 328, 53.  

    10. [10]

      (10) Zheng, X. L.; Zhang, S.; Xu, J. X.;Wei, K. M. Carbon 2002, 40, 2597.  

    11. [11]

      (11) Rasheed, A.; Howe, J. Y.; Dadmun, M. D.; Britt, P. F. Carbon 2007, 45, 1072.  

    12. [12]

      (12) Kowalczyk, Z.; Sentek, J.; Jodzis, S.; Mizera, E.; ralski, J.; Paryjczak, T.; Diduszko, R. Catal. Lett. 1997, 45, 65.  

    13. [13]

      (13) Han,W. F.; Liu, H. Z.; Zhu, H. Catal. Commun. 2007, 8, 351.  

    14. [14]

      (14) Takaoka, M.; Yokokawa, H.; Takeda, N. Appl. Catal. B 2007, 74, 179.  

    15. [15]

      (15) Ding, L. X.;Wang, S. R.; Zheng, X. L.; Chen, Y.; Lu, T. H.; Cao, D. X.; Tang, Y.W. Acta Phys. -Chim. Sin. 2010, 26, 1311. [丁良鑫, 王士瑞, 郑小龙, 陈煜, 陆天虹, 曹殿学, 唐亚文. 物理化学学报, 2010, 26, 1311.]

    16. [16]

      (16) Erkey, C. J. Supercritical Fluids 2009, 47, 517.  

    17. [17]

      (17) Jiao, J. X.; Xu, Q.; Li, L. M. J. Colloid Interface Sci. 2007, 316, 596.  

    18. [18]

      (18) Kim, J.; Kelly, M. J.; Lamb, H. H.; Roberts, G.W.; Kiserow, D. J. J. Phys. Chem. C 2008, 112, 10446.  

    19. [19]

      (19) Hoffer, B.W.; Crezee, E.; Mooijman, P. R. M.; Langeveld, A. D.; Kapteijn, F.; Moulijn, J. A. Catal. Today 2003, 79-80, 35.

    20. [20]

      (20) rp, K. V.; Boerman, E.; Cavenaghi, C. V.; Berben, P. H. Catal. Today 1999, 52, 349.  

    21. [21]

      (21) Pierre, G.; Nathalie, N.; Flèche, G.; Fuertes, P.; Perrard, A. J. Catal. 1998, 180, 51.  

    22. [22]

      (22) Kusserow, B.; Schimpf, S.; Claus, P. Adv. Synth. Catal. 2003, 345, 289.  

    23. [23]

      (23) Boehm, H. P. Carbon 1994, 32, 759.  

    24. [24]

      (24) Mangun, C. L.; Benak, K. R.; Economy, J.; Foster, K. L. Carbon 2001, 39, 1809.  

    25. [25]

      (25) Boehm, H. P. Carbon 2002, 40, 145.  

    26. [26]

      (26) Lucas, A. D.; Valverde, J. L.; Canizares, P.; Rodriguez, L. Appl. Catal. A 1998, 172, 165.  

    27. [27]

      (27) Sun, Z. Y.; Liu, Z. M.; Han, B. X.; Miao, S. H.; Miao, Z. J.; An, G. M. J. Colloid Interface Sci. 2006, 304, 323.  

    28. [28]

      (28) Han,W. F.; Zhao, B.; Huo, C.; Liu, H. Z. Chin. J. Catal. 2004, 25, 194. [韩文锋, 赵波, 霍超, 刘化章. 催化学报, 2004, 25, 194.]

  • 加载中
    1. [1]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    2. [2]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    3. [3]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    14. [14]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    15. [15]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    17. [17]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

Metrics
  • PDF Downloads(892)
  • Abstract views(2578)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return