Citation: CAO Zhan-Min, WANG Kun-Peng, QIAO Zhi-Yu, DU Guang-Wei. Thermodynamic Reoptimization of the Fe-P System[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 37-43. doi: 10.3866/PKU.WHXB201111172 shu

Thermodynamic Reoptimization of the Fe-P System

  • Received Date: 8 October 2011
    Available Online: 17 November 2011

    Fund Project: 国家自然科学基金(50934011)资助项目 (50934011)

  • The Fe-P binary system was reoptimized by means of the CALPHAD approach. The Gibbs energy descriptions of every phase in the Fe-P binary system were optimized based on the latest experimental thermodynamic and phase diagram data. The solution phase (liquid, α-Fe, and γ-Fe) was described by the substitutional solution approximation and the other phases (Fe3P, Fe2P, FeP, FeP2, and FeP4) were treated as the stoichiometric compounds. The optimization was carried out using the Thermo-Calc® software package. The agreement of the optimized phase diagram and thermodynamic data with experimental results is od, and a self-consistent and reliable thermodynamic dataset is obtained to allow further optimization of Fe-based, P-containing multicomponent alloy systems.
  • 加载中
    1. [1]

      (1) Okamoto, H. Bulletin of Alloy Phase Diagrams 1990, 11, 404.  

    2. [2]

      (2) Kubaschewski, O. Iron-Binary Phase Diagrams; Springer-Verlag: Berlin, 1982; pp 84-86.

    3. [3]

      (3) Ohtani, H.; Hanaya, N.; Hasebe, M.; Teraoka, S.; Abe, M. CALPHAD 2006, 30, 147.  

    4. [4]

      (4) Tokunaga, T.; Hanaya, N.; Ohtani, H.; Hasebe, M. ISIJ International 2009, 49, 947.  

    5. [5]

      (5) Zaitsev, A. I.; Dobrokhotova, Z. V.; Litvina, A. D.; Mogutnov, B. M. J. Chem. Soc. Faraday Trans. 1995, 91, 703.  

    6. [6]

      (6) Kaufman, L.; Bernstein, H. Computer Calculation of Phase Diagrams; Academic Press: New York, 1970.

    7. [7]

      (7) Saunders, N.; Modwnik, A. P. CALPHAD-a Comprehensive Guide; Pergamon, Lausanne: Switzerland, 1998.

    8. [8]

      (8) Sundman, B.; Jansson, B.; Anderson, J. O. CALPHAD 1985, 9, 153.  

    9. [9]

      (9) Saklatwalla, B. J. Iron Steel Inst. 1908, 77, 92.

    10. [10]

      (10) Konstantinow, N. Z. Anorg. Chem. 1910, 66, 209.  

    11. [11]

      (11) Haughton, J. L. J. Iron Steel Inst. 1927, 115, 417.

    12. [12]

      (12) Vogel, R. Arch. Eisenhüttenwes. 1929-1930, 3, 369.

    13. [13]

      (13) Roquet, P.; Jegaden, G. Rev. Metall. 1951, 48, 712.

    14. [14]

      (14) Lorenz, K.; Frabritius, H. Arch. Eisenhüttenwes. 1962, 33, 269.

    15. [15]

      (15) Fisher,W. A.; Lorenz, K.; Fabritius, H.; Hoffmann, A.; Kalwa, G. Arch. Eisenhüttenwes. 1966, 37, 79.

    16. [16]

      (16) Gercke, E. Metallurgie 1908, 5, 604.

    17. [17]

      (17) Hanemann, H.; Voss, H. Zentr. Hutten . Walzwerke 1927, 31, 245.

    18. [18]

      (18) Wachtel, E.; Urbain, G.; Ubelacker, E. Compt. Rend. 1963, 257, 2470.

    19. [19]

      (19) Schürmann, E.; Kaiser, H. P.; Hensgen, U. Arch. Eisenhüttenwes. 1981, 52, 51.

    20. [20]

      (20) Kaneko, H.; Nishizawa, T.; Tamaki, K.; Tanifuji, A. Nippon Kinzoku Gakkai-Shi 1965, 29, 166.

    21. [21]

      (21) Kreutzer, C. Z. Phys. 1928, 48, 556.  

    22. [22]

      (22) Oberhoffer, P.; Kreutzer, C. Arch. Eisenhüttenwes. 1929, 2, 449.

    23. [23]

      (23) Yensen, T. D. Trans. Am. Inst. Elec. Eng. 1924, 43, 145.

    24. [24]

      (24) Svechnikov, V. N.; Pan, V. M. Phys. Met. Metallogr. 1958, 6, 80.

    25. [25]

      (25) Doan, A. S., Jr.; ldstein, J. I. Metall. Trans. 1970, 1, 1759.  

    26. [26]

      (26) Hofman, H. P.; Lohberg, K.; Reif,W. Arch. Eisenhüttenwes. 1970, 41, 975.

    27. [27]

      (27) Ko, M.; Nishizawa, T. J. Jpn. Inst. Met. 1979, 43, 118.

    28. [28]

      (28) Franke,W.; Meisel, K.; Juza, R. Z. Anorg. Chem. 1934, 218, 346.  

    29. [29]

      (29) Meisel, K. Z. Anorg. Chem. 1934, 218, 360.  

    30. [30]

      (30) Heimbrecht, M.; Biltz,W. Z. Anorg. Chem. 1939, 242, 233.  

    31. [31]

      (31) Holseth, H.; Kjekshus, A. Acta Chemica Scandinavica 1968, 22, 3273.  

    32. [32]

      (32) Jeitschko,W.; Braun, D. J. Acta Crystallogr. B 1978, 34, 3196.  

    33. [33]

      (33) Weibke, F.; Schrag, G. Elektrochem. 1941, 47, 222.

    34. [34]

      (34) Lewis, G.; Myers, C. E. J. Phys. Chem. 1963, 67, 1289.  

    35. [35]

      (35) Spencer, P.; Kubaschewski, O. A. Arch. Eisenhüttenwes. 1978, 49, 225.

    36. [36]

      (36) Dinsdale, A. T. CALPHAD 1991, 15, 317.  

    37. [37]

      (37) Dinsdale, A. T. NPL Report DMA (A), 1989, 195.

    38. [38]

      (38) Carsson, B.; lin, M.; Rundqvist, S. J. Solid State Chem. 1973, 8, 57.  

    39. [39]

      (39) Redlich, O.; Kister, A. T. Ind. Eng. Chem. 1948, 40, 345.  

  • 加载中
    1. [1]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    2. [2]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    3. [3]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    4. [4]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    5. [5]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    6. [6]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    10. [10]

      Qingtao Niu Xinyao Xu Weiyue Yu Shuxiang Meng Zhiguo Lv Manman Jin . Exploration and Practice of Science-Education Integration in Chemical Engineering Thermodynamics Teaching for Chemical Engineering Majors: A Case of Chemical Engineering Physical Property Data Estimation and Chemical Reaction Equilibrium. University Chemistry, 2025, 40(10): 1-9. doi: 10.12461/PKU.DXHX202412029

    11. [11]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    12. [12]

      Rohit KumarAnita SudhaikAftab Asalam Pawaz KhanVan Huy NeguyenArchana SinghPardeep SinghSourbh ThakurPankaj Raizada . Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications. Acta Physico-Chimica Sinica, 2025, 41(11): 100150-0. doi: 10.1016/j.actphy.2025.100150

    13. [13]

      Yanling Luo Xuejie Qi Rui Shen Xuling Peng Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003

    14. [14]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

    15. [15]

      Hui Xiong Yan Wang Rongxian Bai Yongqi Wu Chengmei Liu Yuefa Gong Jian Zhang . Development of a Compound Talent Training System Based on Virtual Technology: a Case Study of Chemical Unit and Process Simulation Practices. University Chemistry, 2024, 39(10): 314-317. doi: 10.12461/PKU.DXHX202405071

    16. [16]

      Qian Peng Pengfei Yao Zicong Wang Xiufang Xu Hongwei Sun . Promote the Training of Top Talents by Optimizing the Theoretical Computational Chemistry Curriculum System. University Chemistry, 2025, 40(5): 261-267. doi: 10.12461/PKU.DXHX202408012

    17. [17]

      Fangfang Chen Haiming Fan Yan Li Yuan He . 化学生物学专业多元化人才培养导向的课程体系优化探索. University Chemistry, 2025, 40(8): 92-99. doi: 10.12461/PKU.DXHX202409108

    18. [18]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    19. [19]

      Zheng LiFangkun LiXijun XuJun ZengHangyu ZhangLei XiYiwen WuLinwei ZhaoJiahe ChenJun LiuYanping HuoShaomin Ji . A scalable approach to Na4Fe3(PO4)2P2O7@carbon/expanded graphite as cathode for ultralong-lifespan and low-temperature sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110390-. doi: 10.1016/j.cclet.2024.110390

    20. [20]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

Metrics
  • PDF Downloads(1170)
  • Abstract views(2860)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return