Citation: CAO Zhan-Min, WANG Kun-Peng, QIAO Zhi-Yu, DU Guang-Wei. Thermodynamic Reoptimization of the Fe-P System[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 37-43. doi: 10.3866/PKU.WHXB201111172 shu

Thermodynamic Reoptimization of the Fe-P System

  • Received Date: 8 October 2011
    Available Online: 17 November 2011

    Fund Project: 国家自然科学基金(50934011)资助项目 (50934011)

  • The Fe-P binary system was reoptimized by means of the CALPHAD approach. The Gibbs energy descriptions of every phase in the Fe-P binary system were optimized based on the latest experimental thermodynamic and phase diagram data. The solution phase (liquid, α-Fe, and γ-Fe) was described by the substitutional solution approximation and the other phases (Fe3P, Fe2P, FeP, FeP2, and FeP4) were treated as the stoichiometric compounds. The optimization was carried out using the Thermo-Calc® software package. The agreement of the optimized phase diagram and thermodynamic data with experimental results is od, and a self-consistent and reliable thermodynamic dataset is obtained to allow further optimization of Fe-based, P-containing multicomponent alloy systems.
  • 加载中
    1. [1]

      (1) Okamoto, H. Bulletin of Alloy Phase Diagrams 1990, 11, 404.  

    2. [2]

      (2) Kubaschewski, O. Iron-Binary Phase Diagrams; Springer-Verlag: Berlin, 1982; pp 84-86.

    3. [3]

      (3) Ohtani, H.; Hanaya, N.; Hasebe, M.; Teraoka, S.; Abe, M. CALPHAD 2006, 30, 147.  

    4. [4]

      (4) Tokunaga, T.; Hanaya, N.; Ohtani, H.; Hasebe, M. ISIJ International 2009, 49, 947.  

    5. [5]

      (5) Zaitsev, A. I.; Dobrokhotova, Z. V.; Litvina, A. D.; Mogutnov, B. M. J. Chem. Soc. Faraday Trans. 1995, 91, 703.  

    6. [6]

      (6) Kaufman, L.; Bernstein, H. Computer Calculation of Phase Diagrams; Academic Press: New York, 1970.

    7. [7]

      (7) Saunders, N.; Modwnik, A. P. CALPHAD-a Comprehensive Guide; Pergamon, Lausanne: Switzerland, 1998.

    8. [8]

      (8) Sundman, B.; Jansson, B.; Anderson, J. O. CALPHAD 1985, 9, 153.  

    9. [9]

      (9) Saklatwalla, B. J. Iron Steel Inst. 1908, 77, 92.

    10. [10]

      (10) Konstantinow, N. Z. Anorg. Chem. 1910, 66, 209.  

    11. [11]

      (11) Haughton, J. L. J. Iron Steel Inst. 1927, 115, 417.

    12. [12]

      (12) Vogel, R. Arch. Eisenhüttenwes. 1929-1930, 3, 369.

    13. [13]

      (13) Roquet, P.; Jegaden, G. Rev. Metall. 1951, 48, 712.

    14. [14]

      (14) Lorenz, K.; Frabritius, H. Arch. Eisenhüttenwes. 1962, 33, 269.

    15. [15]

      (15) Fisher,W. A.; Lorenz, K.; Fabritius, H.; Hoffmann, A.; Kalwa, G. Arch. Eisenhüttenwes. 1966, 37, 79.

    16. [16]

      (16) Gercke, E. Metallurgie 1908, 5, 604.

    17. [17]

      (17) Hanemann, H.; Voss, H. Zentr. Hutten . Walzwerke 1927, 31, 245.

    18. [18]

      (18) Wachtel, E.; Urbain, G.; Ubelacker, E. Compt. Rend. 1963, 257, 2470.

    19. [19]

      (19) Schürmann, E.; Kaiser, H. P.; Hensgen, U. Arch. Eisenhüttenwes. 1981, 52, 51.

    20. [20]

      (20) Kaneko, H.; Nishizawa, T.; Tamaki, K.; Tanifuji, A. Nippon Kinzoku Gakkai-Shi 1965, 29, 166.

    21. [21]

      (21) Kreutzer, C. Z. Phys. 1928, 48, 556.  

    22. [22]

      (22) Oberhoffer, P.; Kreutzer, C. Arch. Eisenhüttenwes. 1929, 2, 449.

    23. [23]

      (23) Yensen, T. D. Trans. Am. Inst. Elec. Eng. 1924, 43, 145.

    24. [24]

      (24) Svechnikov, V. N.; Pan, V. M. Phys. Met. Metallogr. 1958, 6, 80.

    25. [25]

      (25) Doan, A. S., Jr.; ldstein, J. I. Metall. Trans. 1970, 1, 1759.  

    26. [26]

      (26) Hofman, H. P.; Lohberg, K.; Reif,W. Arch. Eisenhüttenwes. 1970, 41, 975.

    27. [27]

      (27) Ko, M.; Nishizawa, T. J. Jpn. Inst. Met. 1979, 43, 118.

    28. [28]

      (28) Franke,W.; Meisel, K.; Juza, R. Z. Anorg. Chem. 1934, 218, 346.  

    29. [29]

      (29) Meisel, K. Z. Anorg. Chem. 1934, 218, 360.  

    30. [30]

      (30) Heimbrecht, M.; Biltz,W. Z. Anorg. Chem. 1939, 242, 233.  

    31. [31]

      (31) Holseth, H.; Kjekshus, A. Acta Chemica Scandinavica 1968, 22, 3273.  

    32. [32]

      (32) Jeitschko,W.; Braun, D. J. Acta Crystallogr. B 1978, 34, 3196.  

    33. [33]

      (33) Weibke, F.; Schrag, G. Elektrochem. 1941, 47, 222.

    34. [34]

      (34) Lewis, G.; Myers, C. E. J. Phys. Chem. 1963, 67, 1289.  

    35. [35]

      (35) Spencer, P.; Kubaschewski, O. A. Arch. Eisenhüttenwes. 1978, 49, 225.

    36. [36]

      (36) Dinsdale, A. T. CALPHAD 1991, 15, 317.  

    37. [37]

      (37) Dinsdale, A. T. NPL Report DMA (A), 1989, 195.

    38. [38]

      (38) Carsson, B.; lin, M.; Rundqvist, S. J. Solid State Chem. 1973, 8, 57.  

    39. [39]

      (39) Redlich, O.; Kister, A. T. Ind. Eng. Chem. 1948, 40, 345.  

  • 加载中
    1. [1]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    2. [2]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    3. [3]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    4. [4]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    5. [5]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    6. [6]

      Yanling Luo Xuejie Qi Rui Shen Xuling Peng Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003

    7. [7]

      Hui Xiong Yan Wang Rongxian Bai Yongqi Wu Chengmei Liu Yuefa Gong Jian Zhang . Development of a Compound Talent Training System Based on Virtual Technology: a Case Study of Chemical Unit and Process Simulation Practices. University Chemistry, 2024, 39(10): 314-317. doi: 10.12461/PKU.DXHX202405071

    8. [8]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    9. [9]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    10. [10]

      Hao Zhao Zhen Gao Weihong Li . Practice and Exploration of the Construction of Experimental Technician Teams of Universities in the New Period. University Chemistry, 2024, 39(4): 7-12. doi: 10.3866/PKU.DXHX202310122

    11. [11]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    12. [12]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    13. [13]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    14. [14]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    15. [15]

      Hui Liu Shupeng Zhang Yuntian Zhang Wei Dong Yuji Liu Bingxin Deng Dongping Chen Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028

    16. [16]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    17. [17]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    18. [18]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    19. [19]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    20. [20]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

Metrics
  • PDF Downloads(1170)
  • Abstract views(2635)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return