Citation: WANG Xi-Wen, JIANG Fang-Ting, SUO Quan-Ling, FANG Yu-Zhu, LU Yong. Self-supporting Macroscopic Carbon/Ni-Fiber Hybrid Electrodes Prepared by Catalytic Chemical Vapor Deposition Using Various Carbonaceous Compounds and Their Capacitive Deionization Performance[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2605-2612. doi: 10.3866/PKU.WHXB20111116 shu

Self-supporting Macroscopic Carbon/Ni-Fiber Hybrid Electrodes Prepared by Catalytic Chemical Vapor Deposition Using Various Carbonaceous Compounds and Their Capacitive Deionization Performance

  • Received Date: 25 May 2011
    Available Online: 5 September 2011

    Fund Project: 国家自然科学基金(20973063, 21076083) (20973063, 21076083)科技启明星(跟踪)计划&rdquo (跟踪)(10HQ1400800)资助项目 (10HQ1400800)

  • We prepared a series of self-supported macroscopic C/Ni-fiber hybrid electrodes by catalytic chemical vapor deposition (CCVD) using methane, ethylene, ethanol and n-butanol as carbon sources to embed carbon onto a three-dimensional network of sinter-locked conductive 8 μm-nickel fibers. For the as-prepared hybrid electrodes, the Ni-microfibrous network serves as a current collector and the carbons as ion storage media while the macroporous void space serves as an electrolyte reservoir. We characterized the hybrid electrodes using scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), N2 isothermal adsorptiondesorption, cyclic voltammetry and electrochemical impedance spectroscopy. The desalination performance of the C/Ni-fiber hybrids was evaluated as electrodes in a capacitive deionization system. The carbon morphology is dependent on the carbonaceous compounds used in CCVD: carbon nanotubes (CNTs) with fishbone-like structure, CNTs with inclined graphene layers parallel to the tube axis, rod-like carbon nanofibers (CNFs) and worm-like CNFs for ethylene, methane, n-butanol and ethanol. The desalination performance of these hybrid electrodes with respect to the carbonaceous compounds decreases as follows: ethylene>n-butanol>methane>ethanol, which correlates with their electrochemical features, pore structures and their carbon nanostructures. The hybrid electrodes obtained using ethylene as the carbon source gave a maximum electrosorption capacity of 159 μmol·g-1 using a direct current voltage of 1.2 V and a 100 mg·L-1 NaCl aqueous solution as raw water.
  • 加载中
    1. [1]

      (1) Welgemoed, T. J.; Schutte, C. F. Desalination 2005, 183 (1-3), 327.

    2. [2]

      (2) Yang, K. L.; Ying, T. Y.; Yiacoumi, S.; Tsouris, C.; Vittoratos, E. S. Langmuir 2001, 17 (6), 1961.

    3. [3]

      (3) Arnold, B. B.; Murphy, G.W. J. Phys. Chem. 1961, 65, 135.  

    4. [4]

      (4) Gabelich, C. J.; Tran, T. D.; Suffet, I. H. Environ. Sci. Technol. 2002, 36 (13), 3010.  

    5. [5]

      (5) Park, K. K.; Lee, J. B.; Park, P. Y.; Yoon, S.W.; Moon, J. S.; Eum, H. M.; Lee, C.W. Desalination 2007, 206 (1-3), 86.

    6. [6]

      (6) Andelman, M. D. Energy andWeight Efficient Flow-Through Capacitor, System and Method. U.S. Patent 6325907, 2001.  

    7. [7]

      (7) Jiang, F. T.; Fang, Y. Z.; Chen, L.; Xue, Q. S.; Lu, Y. Mater. Lett. 2010, 64 (2), 199.  

    8. [8]

      (8) Wang, X. Z.; Li, M. G.; Chen, Y.W.; Cheng, R. M.; Huang, S. M.; Pan, L. K.; Sun, Z. Appl. Phys. Lett. 2006, 89 (5), 053127.  

    9. [9]

      (9) Ling, M.; Zhao, G. F.; Cao, F. H.; Lu, Y. Chin. J. Catal. 2010, 31 (7), 717. [凌敏, 赵国锋, 曹发海, 路勇. 催化学报, 2010, 31 (7), 717.]

    10. [10]

      (10) Fang, Y. Z.; Jiang, F. T.; Lu, Y. Acta Phys. -Chim. Sin. 2011, 27 (8), 1854. [方玉珠, 姜芳婷, 路勇. 物理化学学报, 2011, 27 (8), 1854.]

    11. [11]

      (11) Béguin, F.; Szostak, K.; Lota, G.; Frackowiak, E. Adv. Mater. 2005, 17 (19), 2380.  

    12. [12]

      (12) An, K. H.; Kim,W. S.; Park, Y. S.; Choi, Y. C.; Lee, S. M.; Chung, D. C.; Bae, D. J.; Lim, S. C.; Lee, Y. H. Adv. Mater. 2001, 13 (7), 497.  

    13. [13]

      (13) Niu, C.; Sichel, E. K.; Hoch, R.; Moy, D.; Tennent, H. Appl. Phys. Lett. 1997, 70 (11), 1480.

    14. [14]

      (14) Bordjiba, T.; Mohamedi, M.; Dao, L.H. Adv. Meter. 2008, 20(4), 815.

    15. [15]

      (15) Gao, L. Z.; Kiwi-Minsker, L.; Renken, A. Surf. Coatings Technol. 2008, 202 (13), 3029.

    16. [16]

      (16) Jiang, F. T.; Fang, Y. Z.; Liu, Y.; Chen, L.; Xue, Q. S.; Lu, Y.; Lu, J. X.; He, M. Y. J. Mater. Chem. 2009, 19 (22), 3632.

    17. [17]

      (17) Deng, M. M.; Zhao, G. F.; Xue, Q. S.; Chen, L.; Lu, Y. Appl. Catal. B 2010, 99 (1-2), 222.

    18. [18]

      (18) Mao, J. P.; Deng, M. M.; Chen, L.; Liu, Y.; Lu, Y. AIChE J. 2010, 56 (6), 1545.  

    19. [19]

      (19) Lu, Y.;Wang, H.; Liu, Y.; Xue, Q. S.; Chen, L.; He, M. Y. Lab Chip 2007, 7 (1), 133.

    20. [20]

      (20) Liu, Y.;Wang, H.; Li, J. F.; Lu, Y.; Xue, Q. S.; Chen, J. C. AIChE J., 2007, 53 (7), 1845.  

    21. [21]

      (21) Zhou, J. H.; Sui, Z. J.; Li, P.; Chen, D.; Dai, Y. C.; Yuan,W. K. Carbon 2006, 44 (15), 3255.

  • 加载中
    1. [1]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    13. [13]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    18. [18]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(933)
  • Abstract views(2425)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return