Citation: YANG Jun-Fang, CHENG Ji-Gui, FAN Yu-Meng, WANG Rui, GAO Jian-Feng. Preparation, Structure and Properties of Pr1.2Sr0.8NiO4 Cathode Materials for Intermediate-Temperature Solid Oxide Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 95-99. doi: 10.3866/PKU.WHXB201111161 shu

Preparation, Structure and Properties of Pr1.2Sr0.8NiO4 Cathode Materials for Intermediate-Temperature Solid Oxide Fuel Cells

  • Received Date: 29 July 2011
    Available Online: 16 November 2011

    Fund Project: 安徽省自然科学基金(070414186) (070414186) 安徽省科学攻关项目(2008AKKG0332) (2008AKKG0332) 材料科学与工程日本玻璃片基金(070304B2) (070304B2)低维材料及其应用技术教育部重点实验室开放基金(DWKF0802)资助 (DWKF0802)

  • Pr1.2Sr0.8NiO4 (PSNO) cathode material for an intermediate-temperature solid oxide fuel cell (IT-SOFC) was synthesized by a glycine-nitrate process. The phase structure of the synthesized powders was characterized by X-ray diffraction (XRD) analysis. The thermal expansion coefficient (TEC) and the electrical conductivity of the sintered PSNO samples were measured. Electrochemical impedance spectroscopy (EIS) measurements of the PSNO materials were carried out using an electrochemical workstation. Single cells based on the Sm0.2Ce0.8O1.9 (SCO) electrolyte were also assembled and tested. The results show that PSNO materials with a K2NiF4-type structure can be obtained by calcining the precursors at temperatures higher than 1050 °C. The sintered PSNO samples have an average TEC of about 12×10-6 K-1 within 200-800 °C, an electrical conductivity of 155 S·cm-1 at 450 °C and an average conduction activation energy of 0.034 eV at 400-800 °C. Electrochemical impedance spectroscopy (EIS) shows that the area specific resistance (ASR) of the PSNO cathode on the SCO electrolyte is 0.37 Ω·cm2 and the ASR of the single Ni-SCO/SCO/PSNO cell is 0.61 Ω·cm2 at 700 ° C. The single Ni-SCO/SCO/ PSNO cell produces a power density of 288 mW·cm-2 and an open circuit voltage of 0.75 V at 800 °C. Preliminary work showed that the PSNO materials may be a potential cathode material for use in IT-SOFC.
  • 加载中
    1. [1]

      (1) Ardigò, M. R.; Perron, A.; Combemale, L.; Heintz, O.; Caboche, G.; Chevalier, S. J. Power Sources 2011, 196, 2037.  

    2. [2]

      (2) Tu, H. Y.; Stimming, U. J. Power Sources 2004, 127, 284.  

    3. [3]

      (3) Chiba, R.; Yoshimura, F.; Sakurai, Y. Solid State Ionics 1999, 124, 281.  

    4. [4]

      (4) Liu, Y.; Rauch,W.; Zha, S.W.; Liu, M. L. Solid State Ionics 2004, 166, 261.  

    5. [5]

      (5) Santillán, M. J.; Caneiro, A.; Quaranta, N.; Boccaccini, A. R. J. Eur. Ceram. Soc. 2009, 29, 1125.  

    6. [6]

      (6) Kim, Y. M.; Kim-Lohsoontorn, P.; Baek, S.W.; Bae, J. Int. J. Hydrog. Energy 2011, 36, 3138.  

    7. [7]

      (7) Amow, G.; Whitfield, P. S.; Davidson, I. J.; Hammond, R. P.; Munnings, C. N.; Skinner, S. J. Ceram. Int. 2004, 30, 1635.  

    8. [8]

      (8) Al Daroukh, M.; Vashook, V. V.; Ullmann, H.; Tietz, F.; Arual Raj, I. Solid State Ionics 2003, 158, 141.  

    9. [9]

      (9) Skinner, S. J .; Kilner, J. A. Solid State Ionics 2000, 135, 709.  

    10. [10]

      (10) Boehm, E.; Bassat, J. M.; Steil, M. C.; Dordor, P.; Mauvy, F.; Grenier, J. C. Solid State Sci. 2003, 5, 973.  

    11. [11]

      (11) Caronna, T.; Fontana, F.; Sora, I. N.; Pelosato, R.; Viganò, L. Solid State Ionics 2010, 181, 1355.  

    12. [12]

      (12) Ding, X. F.; Kong, X.; Jiang, J. G.; Cui, C. Int. J. Hydrog. Energy 2009, 34, 6869.  

    13. [13]

      (13) Huang, X. Q.; Zhang, F. M. J. Phys. Chem. Solids 2009, 70, 665.  

    14. [14]

      (14) Cheng, J. G.; Jiang Q. M.; He, H. G.; Yang, J. F.;Wang, Y. F.; Gao, J. F. Mater. Chem. Phys. 2011, 125, 704.  

    15. [15]

      (15) Zheng, Y. F.; He, S. C.; Ge, L.; Zhou, M.; Chen, H.; Guo, L. C. Int. J. Hydrogen Energy 2011, 36 , 5128.  

    16. [16]

      (16) Nie, H.W.;Wen, T. L.;Wang, S. R.;Wang, Y. S.; Guth, U.; Vashook, V. Solid State Ionics 2006, 177, 1929.  

    17. [17]

      (17) Lv, H.;Wu, Y. J.; Huang, B.; Zhao, B. Y.; Hu, K. A. Solid State Ionics 2006, 177, 901.  

    18. [18]

      (18) Horita, T.; Yamaji, K.; Sakai, N.; Yokokawa, H.;Weber, A.; Ivers-Tiffée, E. Electrochim. Acta 2001, 46, 1837.  

    19. [19]

      (19) Khandale, A. P.; Bhoga, S. S. J. Power Sources 2010, 195, 7974.  

    20. [20]

      (20) Sun, L. P.; Li, Q.; Zhao, H.; Huo, L. H.; Grenier, J. C. J. Power Sources 2008, 183, 43.  

  • 加载中
    1. [1]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    10. [10]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    13. [13]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    14. [14]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    17. [17]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    18. [18]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    19. [19]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    20. [20]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(716)
  • Abstract views(2180)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return