Citation: DOU Yu-Sheng, LI Wei, YUAN Shuai, ZHANG Wen-Ying, LI An-Yang, SHU Kun-Xian, TANG Hong. Dynamics Simulation of Photophysical Deactivation Pathway for Stacked Thymines[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2559-2564. doi: 10.3866/PKU.WHXB20111115
-
A semiclassical dynamics simulation study was undertaken to determine the photophysical deactivation of the lowest excited state of two stacked thymines. Only one thymine, referred to as T, was excited by a laser pulse and the other molecule, referred to as T′, remained in the ground state. The simulation results show that charge transfer between the two thymines because of a π-stacking interaction leads to the formation of an excimer state, which includes a negative T and a positive T′. Additionally, the simulation study indicates that a steric effect of the neighboring bases inhibits the out-of-plane deformation, which is essential in accessing the conical intersection between the lowest electronic-excited state and the ground state. The steric effect eventually leads to a longer electronic-excited state lifetime for the two stacked thymines. The simulation results reveal that when the interbase distance is less than 0.3 nm the molecule T has a remarkable deformation at its C5 and C6 sites resulting in charge recombination. The charge recombination ultimately makes the system electronically neutral. On the other hand, the molecule T′ has a strong twist about its C5′―C6′ bond in the proximity of the avoided crossing by which the system decays to the ground state. Finally, the two thymine molecules in their ground states recover their planar geometries.
-
-
[1]
(1) Beukers, R.; Eker, A. P. M.; Lohman, P. H. M. DNA Repair 2008, 7, 530.
-
[2]
(2) Melnikova, V. O. ; Ananthaswamy, H. N. Mutat. Res. 2005, 571, 91.
-
[3]
(3) Cadet, J.; Sage, E.; Douki, T. Mutat. Res. 2005, 571, 3.
-
[4]
(4) Mouret, S.; Badouin, C.; Charveron, M.; Favier, A.; Cadet, J.; Douki, T. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 3765.
-
[5]
(5) Douki, T.; Reynaud-Angelin, A.; Cadet, J.; Sage, E.; Biochemistry 2003, 42, 9221.
-
[6]
(6) Durbeej, B.; Eriksson, L. A. Photochem. Photobiol. 2003, 78, 159.
-
[7]
(7) Schreier,W. J.; Schrader, T. E.; Koller, F. O.; Gilch, P.; Crespo-Hernández, C. E.; Swaminathan, V. N.; Carell, T.; Zinth, W.; Kohler, B. Science 2007, 315, 625.
-
[8]
(8) Schreier,W. J.; Kubon, J.; Regner, N. J. Am. Chem. Soc. 2009, 131, 5038.
-
[9]
(9) Zhang, R. B.; Eriksson, L. A. J. Phys. Chem. B 2006, 110, 7556.
-
[10]
(10) Durbeej, B.; Eriksson, L. A. J. Photochem. Photobiol. A 2002, 152, 95.
-
[11]
(11) Boggio-Pasqua, M.; Groenhof, G.; Sch?fer, L. V.; Grubmüller, H.; Robb, M. A. J. Am. Chem. Soc. 2007, 129, 10996.
-
[12]
(12) Blancafort, L.; Migani, A. J. Am. Chem. Soc. 2007, 129, 14540.
-
[13]
(13) Law, Y. K.; Azadi, J.; Crespo-Hernández, C. E.; Olmon, E.; Kohler, B. Biophys. J. 2008, 94, 3590.
-
[14]
(14) Johnson, A. T.;Wiest, O. J. Phys. Chem. B 2007, 111, 14398.
-
[15]
(15) McCullagh, M.; Hariharan, M.; Lewis, F. D.; Markovitsi, D.; Douki, T.; Schatz, G. C. J. Phys. Chem. B 2010, 114, 5215.
-
[16]
(16) Eisinger, J.; Lamola, A. Biochem. Biophys. Res. Commun. 1967, 28, 558.
-
[17]
(17) Eisinger, J.; Shulman, R. G. Proc. Natl. Acad. Sci. 1967, 58, 895.
-
[18]
(18) Eisinger, J.; Guéron, M.; Shulman, R. G.; Yamane, T. Proc. Natl. Acad. Sci. U. S. A. 1966, 55, 1015.
-
[19]
(19) Birks, J. B. Nature 1967, 214, 1187.
-
[20]
(20) Takaya, T.; Su, C.; de La Harpe, K.; Crespo-Hernández, C. E.; Kohler, B. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 10285.
-
[21]
(21) Conti, I.; Altoe, P.; Stenta, M.; Garavelli, M.; Orlandi, G. Phys. Chem. Chem. Phys. 2010, 12, 5016.
-
[22]
(22) Crespo-Hernández, C.; Kohler, B. Nature 2005, 436, 1141.
- [23]
-
[24]
(24) Kwok,W. M.; Ma, C.; Phillips, D. L. J. Am. Chem. Soc. 2006, 128, 11894.
-
[25]
(25) Crespo-Hernández, C. E.; Kohler, B. J. Phys. Chem. B 2004, 108, 11182.
-
[26]
(26) Kwok,W. M.; Ma, C.; Phillips, D. L. J. Phys. Chem. B 2009, 113, 11527.
-
[27]
(27) Holm, A. I. S.; Nielsen, L. M.; Kohler, B.; Hoffmann, S. V.; Nielsen, S. B. Phys. Chem. Chem. Phys. 2010, 12, 3426.
-
[28]
(28) Cohen, B.; Larson, M. H.; Kohler, B. Chem. Phys. 2008, 350, 165.
-
[29]
(29) Dou, Y.; Torralva, B.; Allen, R. J. Mod. Optics. 2003, 50, 2615.
-
[30]
(30) Dou, Y.; Torralva, B.; Allen, R. Chem. Phys. Lett. 1998, 378, 323.
-
[31]
(31) Graf, M.; Vogl, P. Phys. Rev. B 1995, 51, 49.
-
[32]
(32) Haugk, M.; Elsner, J.; Frauenheim, T.; Seifert, G.; Sternberg, M. Phys. Status Solidi B, 2000, 217, 473.
-
[33]
(33) Frauenheim, T.; Seifert, G.; Elstner, M.; Niehaus, T. A.; K?hler, C.; Amkreutz, M.; Sternberg, M.; Hajnal, Z.; Di Carlo, A.; Suhai,S. J. Phys: Condens. Mater. 2002, 14, 3015.
-
[34]
(34) Wanko, M.; Garavelli, M.; Bernardi, F.; Niehaus, T. A.; Frauenheim, T.; Elstner, M. J. Chem. Phys. 2004, 120, 1674.
-
[35]
(35) Zheng, G.; Lundberg, M.; Jakowski, J.; Vreven,T.; Frisch, M. J.; Morokuma, K. Int. J. Quantum Chem. 2009, 109, 1841.
-
[36]
(36) Yuan, S.; Dou, Y. S.;Wu,W. F.; Hu, Y.; Zhao, J. S. J. Phys. Chem. A 2008, 112, 13326.
-
[37]
(37) Yuan, S.;Wu,W. F.; Dou, Y. S.; Zhao, J. S. Chin. Chem. Lett. 2008, 19, 1379.
-
[38]
(38) Dou, Y. S.; Hu, Y.; Yuan, S.;Wu,W. F.; Tang, H. Mol. Phys. 2009, 107, 181.
-
[39]
(39) Yuan, S.;Wang, D.; Bai, M. Z.;Wei Z. L.; Meng, P.; Dou, Y. S. Journal of Chongqing Univerisity and Telecommunications(Natural Science Edition) 2009, 21, 821. [袁帅, 王丹, 白明泽, 魏照林, 蒙平, 豆育升, 重庆邮电大学学报(自然科学版), 2009, 21, 821]
-
[40]
(40) Yuan, S.;Wu,W.;Wen, Z.; Shu, K.; Tang, H.; Dou, Y.; Lo, G. Mol. Phys. 2010, 108, 3431.
-
[41]
(41) Jiang, C.; Xie, R.; Li, F.; Allen, R. J. Phys. Chem. A 2011, 115, 244.
-
[42]
(42) Lei, Y.; Yuan, S.; Dou, Y.;Wang, Y.;Wen, Z. J. Phys. Chem. A 2008, 112, 8497.
-
[43]
(43) Zhang,W.; Yuan, S.; Li, A.; Dou, Y.; Zhao, J.; Fang,W. J. Phys. Chem. C 2010, 114, 5594.
-
[44]
(44) Dou, Y.; Xiong, S.;Wu,W. F.; Yuan, S.; Tang, H. J. Photochem. Photobiol. B 2010, 101, 31.
-
[45]
(45) Zhang,W.; Yuan, S.;Wang, Z.; Qi, Z.; Zhao, J.; Dou, Y.; Lo, G. Chem. Phys. Lett. 2011, 506, 303.
-
[46]
(46) Yuan, S; Zhang,W. Y.; Li, A. Y.; Zhu, Y. M.; Dou, Y. S. Acta Phys. -Chim. Sin. 2011, 27, 824. [袁帅, 张文英, 李安阳, 朱义敏, 豆育升, 物理化学学报, 2011, 27, 824.]
-
[47]
(47) Perun, S.; Sobolewski, A. L.; Domcke,W. J. Am. Chem. Soc. 2005, 127, 6257.
-
[48]
(48) Perun, S.; Sobolewski, A. L.; Domcke,W. J. Phys. Chem. A 2006, 110, 13238.
-
[49]
(49) Rehm, D.;Weller, A. Isr. J. Chem. 1970, 8, 259.
-
[50]
(50) Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M. J. Phys. Chem. 1996, 100, 5541.
-
[51]
(51) Liu, Q.; Liu, Z. L. Chin. J. Org. Chem 2009, 29, 380. [刘强, 刘中立,有机化学, 2009, 29, 380]
-
[52]
(52) Devoe, H.; Tinoco, I. J. Mol. Biol. 1962, 4, 500.
-
[1]
-
-
[1]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[2]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[3]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[4]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[5]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[6]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[7]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[8]
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
-
[9]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[10]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[11]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[12]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[13]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[14]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[15]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[16]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[17]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[18]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[19]
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
-
[20]
Limin Shao , Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086
-
[1]
Metrics
- PDF Downloads(822)
- Abstract views(2231)
- HTML views(8)