Citation: DOU Yu-Sheng, LI Wei, YUAN Shuai, ZHANG Wen-Ying, LI An-Yang, SHU Kun-Xian, TANG Hong. Dynamics Simulation of Photophysical Deactivation Pathway for Stacked Thymines[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2559-2564. doi: 10.3866/PKU.WHXB20111115 shu

Dynamics Simulation of Photophysical Deactivation Pathway for Stacked Thymines

  • Received Date: 24 May 2011
    Available Online: 5 September 2011

    Fund Project: 国家自然科学基金(21073242) (21073242) 重庆市自然科学基金(cstc2011jjA00009) (cstc2011jjA00009)重庆市教委科学技术项目(KJ100507)资助 (KJ100507)

  • A semiclassical dynamics simulation study was undertaken to determine the photophysical deactivation of the lowest excited state of two stacked thymines. Only one thymine, referred to as T, was excited by a laser pulse and the other molecule, referred to as T′, remained in the ground state. The simulation results show that charge transfer between the two thymines because of a π-stacking interaction leads to the formation of an excimer state, which includes a negative T and a positive T′. Additionally, the simulation study indicates that a steric effect of the neighboring bases inhibits the out-of-plane deformation, which is essential in accessing the conical intersection between the lowest electronic-excited state and the ground state. The steric effect eventually leads to a longer electronic-excited state lifetime for the two stacked thymines. The simulation results reveal that when the interbase distance is less than 0.3 nm the molecule T has a remarkable deformation at its C5 and C6 sites resulting in charge recombination. The charge recombination ultimately makes the system electronically neutral. On the other hand, the molecule T′ has a strong twist about its C5′―C6′ bond in the proximity of the avoided crossing by which the system decays to the ground state. Finally, the two thymine molecules in their ground states recover their planar geometries.
  • 加载中
    1. [1]

      (1) Beukers, R.; Eker, A. P. M.; Lohman, P. H. M. DNA Repair 2008, 7, 530.  

    2. [2]

      (2) Melnikova, V. O. ; Ananthaswamy, H. N. Mutat. Res. 2005, 571, 91.

    3. [3]

      (3) Cadet, J.; Sage, E.; Douki, T. Mutat. Res. 2005, 571, 3.

    4. [4]

      (4) Mouret, S.; Badouin, C.; Charveron, M.; Favier, A.; Cadet, J.; Douki, T. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 3765.

    5. [5]

      (5) Douki, T.; Reynaud-Angelin, A.; Cadet, J.; Sage, E.; Biochemistry 2003, 42, 9221.  

    6. [6]

      (6) Durbeej, B.; Eriksson, L. A. Photochem. Photobiol. 2003, 78, 159.  

    7. [7]

      (7) Schreier,W. J.; Schrader, T. E.; Koller, F. O.; Gilch, P.; Crespo-Hernández, C. E.; Swaminathan, V. N.; Carell, T.; Zinth, W.; Kohler, B. Science 2007, 315, 625.  

    8. [8]

      (8) Schreier,W. J.; Kubon, J.; Regner, N. J. Am. Chem. Soc. 2009, 131, 5038.  

    9. [9]

      (9) Zhang, R. B.; Eriksson, L. A. J. Phys. Chem. B 2006, 110, 7556.  

    10. [10]

      (10) Durbeej, B.; Eriksson, L. A. J. Photochem. Photobiol. A 2002, 152, 95.  

    11. [11]

      (11) Boggio-Pasqua, M.; Groenhof, G.; Sch?fer, L. V.; Grubmüller, H.; Robb, M. A. J. Am. Chem. Soc. 2007, 129, 10996.  

    12. [12]

      (12) Blancafort, L.; Migani, A. J. Am. Chem. Soc. 2007, 129, 14540.  

    13. [13]

      (13) Law, Y. K.; Azadi, J.; Crespo-Hernández, C. E.; Olmon, E.; Kohler, B. Biophys. J. 2008, 94, 3590.  

    14. [14]

      (14) Johnson, A. T.;Wiest, O. J. Phys. Chem. B 2007, 111, 14398.  

    15. [15]

      (15) McCullagh, M.; Hariharan, M.; Lewis, F. D.; Markovitsi, D.; Douki, T.; Schatz, G. C. J. Phys. Chem. B 2010, 114, 5215.  

    16. [16]

      (16) Eisinger, J.; Lamola, A. Biochem. Biophys. Res. Commun. 1967, 28, 558.  

    17. [17]

      (17) Eisinger, J.; Shulman, R. G. Proc. Natl. Acad. Sci. 1967, 58, 895.  

    18. [18]

      (18) Eisinger, J.; Guéron, M.; Shulman, R. G.; Yamane, T. Proc. Natl. Acad. Sci. U. S. A. 1966, 55, 1015.  

    19. [19]

      (19) Birks, J. B. Nature 1967, 214, 1187.

    20. [20]

      (20) Takaya, T.; Su, C.; de La Harpe, K.; Crespo-Hernández, C. E.; Kohler, B. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 10285.  

    21. [21]

      (21) Conti, I.; Altoe, P.; Stenta, M.; Garavelli, M.; Orlandi, G. Phys. Chem. Chem. Phys. 2010, 12, 5016.

    22. [22]

      (22) Crespo-Hernández, C.; Kohler, B. Nature 2005, 436, 1141.  

    23. [23]

      (23) Schwalb, N. K.; Temps, F. Science 2008, 322, 243.  

    24. [24]

      (24) Kwok,W. M.; Ma, C.; Phillips, D. L. J. Am. Chem. Soc. 2006, 128, 11894.  

    25. [25]

      (25) Crespo-Hernández, C. E.; Kohler, B. J. Phys. Chem. B 2004, 108, 11182.  

    26. [26]

      (26) Kwok,W. M.; Ma, C.; Phillips, D. L. J. Phys. Chem. B 2009, 113, 11527.  

    27. [27]

      (27) Holm, A. I. S.; Nielsen, L. M.; Kohler, B.; Hoffmann, S. V.; Nielsen, S. B. Phys. Chem. Chem. Phys. 2010, 12, 3426.

    28. [28]

      (28) Cohen, B.; Larson, M. H.; Kohler, B. Chem. Phys. 2008, 350, 165.  

    29. [29]

      (29) Dou, Y.; Torralva, B.; Allen, R. J. Mod. Optics. 2003, 50, 2615.

    30. [30]

      (30) Dou, Y.; Torralva, B.; Allen, R. Chem. Phys. Lett. 1998, 378, 323.

    31. [31]

      (31) Graf, M.; Vogl, P. Phys. Rev. B 1995, 51, 49.

    32. [32]

      (32) Haugk, M.; Elsner, J.; Frauenheim, T.; Seifert, G.; Sternberg, M. Phys. Status Solidi B, 2000, 217, 473.  

    33. [33]

      (33) Frauenheim, T.; Seifert, G.; Elstner, M.; Niehaus, T. A.; K?hler, C.; Amkreutz, M.; Sternberg, M.; Hajnal, Z.; Di Carlo, A.; Suhai,S. J. Phys: Condens. Mater. 2002, 14, 3015.  

    34. [34]

      (34) Wanko, M.; Garavelli, M.; Bernardi, F.; Niehaus, T. A.; Frauenheim, T.; Elstner, M. J. Chem. Phys. 2004, 120, 1674.  

    35. [35]

      (35) Zheng, G.; Lundberg, M.; Jakowski, J.; Vreven,T.; Frisch, M. J.; Morokuma, K. Int. J. Quantum Chem. 2009, 109, 1841.  

    36. [36]

      (36) Yuan, S.; Dou, Y. S.;Wu,W. F.; Hu, Y.; Zhao, J. S. J. Phys. Chem. A 2008, 112, 13326.  

    37. [37]

      (37) Yuan, S.;Wu,W. F.; Dou, Y. S.; Zhao, J. S. Chin. Chem. Lett. 2008, 19, 1379.  

    38. [38]

      (38) Dou, Y. S.; Hu, Y.; Yuan, S.;Wu,W. F.; Tang, H. Mol. Phys. 2009, 107, 181.  

    39. [39]

      (39) Yuan, S.;Wang, D.; Bai, M. Z.;Wei Z. L.; Meng, P.; Dou, Y. S. Journal of Chongqing Univerisity and Telecommunications(Natural Science Edition) 2009, 21, 821. [袁帅, 王丹, 白明泽, 魏照林, 蒙平, 豆育升, 重庆邮电大学学报(自然科学版), 2009, 21, 821]

    40. [40]

      (40) Yuan, S.;Wu,W.;Wen, Z.; Shu, K.; Tang, H.; Dou, Y.; Lo, G. Mol. Phys. 2010, 108, 3431.  

    41. [41]

      (41) Jiang, C.; Xie, R.; Li, F.; Allen, R. J. Phys. Chem. A 2011, 115, 244.  

    42. [42]

      (42) Lei, Y.; Yuan, S.; Dou, Y.;Wang, Y.;Wen, Z. J. Phys. Chem. A 2008, 112, 8497.  

    43. [43]

      (43) Zhang,W.; Yuan, S.; Li, A.; Dou, Y.; Zhao, J.; Fang,W. J. Phys. Chem. C 2010, 114, 5594.  

    44. [44]

      (44) Dou, Y.; Xiong, S.;Wu,W. F.; Yuan, S.; Tang, H. J. Photochem. Photobiol. B 2010, 101, 31.  

    45. [45]

      (45) Zhang,W.; Yuan, S.;Wang, Z.; Qi, Z.; Zhao, J.; Dou, Y.; Lo, G. Chem. Phys. Lett. 2011, 506, 303.  

    46. [46]

      (46) Yuan, S; Zhang,W. Y.; Li, A. Y.; Zhu, Y. M.; Dou, Y. S. Acta Phys. -Chim. Sin. 2011, 27, 824. [袁帅, 张文英, 李安阳, 朱义敏, 豆育升, 物理化学学报, 2011, 27, 824.]

    47. [47]

      (47) Perun, S.; Sobolewski, A. L.; Domcke,W. J. Am. Chem. Soc. 2005, 127, 6257.  

    48. [48]

      (48) Perun, S.; Sobolewski, A. L.; Domcke,W. J. Phys. Chem. A 2006, 110, 13238.  

    49. [49]

      (49) Rehm, D.;Weller, A. Isr. J. Chem. 1970, 8, 259.

    50. [50]

      (50) Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M. J. Phys. Chem. 1996, 100, 5541.  

    51. [51]

      (51) Liu, Q.; Liu, Z. L. Chin. J. Org. Chem 2009, 29, 380. [刘强, 刘中立,有机化学, 2009, 29, 380]

    52. [52]

      (52) Devoe, H.; Tinoco, I. J. Mol. Biol. 1962, 4, 500.  

  • 加载中
    1. [1]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    2. [2]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    3. [3]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    4. [4]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    5. [5]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    6. [6]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    9. [9]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    19. [19]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    20. [20]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

Metrics
  • PDF Downloads(822)
  • Abstract views(2232)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return