Citation: YIN Shi-Bin, LUO Lin, JING Sheng-Yu, ZHU Qiang-Qiang, QIANG Ying-Huai. Effect of Intermittent Microwave Heating on the Performance of Catalysts for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 85-89. doi: 10.3866/PKU.WHXB201111153 shu

Effect of Intermittent Microwave Heating on the Performance of Catalysts for Oxygen Reduction Reaction

  • Received Date: 9 October 2011
    Available Online: 15 November 2011

    Fund Project: 国家自然科学基金(21106178) (21106178) 中国博士后基金(20110491480) (20110491480) 徐州市科技项目(XJ11B009) (XJ11B009) 徐州市多晶硅与光伏能源技术专项(6AT102092) (6AT102092)材料复合新技术国家重点实验室(武汉理工大学)开放基金(2012-KF-13) (武汉理工大学)开放基金(2012-KF-13)中国矿业大学青年基金(2011QNA21, 2009A026)资助 (2011QNA21, 2009A026)

  • The influence of intermittent microwave heating (IMH) on the physicochemical and electrochemical properties of platinum loaded on multi-walled carbon nanotubes (Pt/MWCNTs) was investigated. X-ray diffraction results revealed that the crystal size of Pt particles hardly increased for smaller numbers of pulse repetitions, but became much larger as the number of pulse repetitions increased. Cyclic voltammetry (CV) and rotating disk electrode (RDE) results showed that the Pt/MWCNTs catalysts prepared by IMH in a repeated pulse form of 5s-on/5s-off for 20 pulse repetitions possessed the largest electrochemical surface area. An onset potential of approximately 1.0 V (vs RHE) was observed for the oxygen reduction reaction in oxygen-saturated 0.5 mol·L-1 H2SO4 aqueous solutions. The IMH method is simple, economical, and can potentially be scaled up for the mass production of nanomaterials.
  • 加载中
    1. [1]

      (1) Zhang, S. S.; Yuan, X. Z.; Hin, J. N. C.;Wang, H. J. J. Power Sources 2009, 194, 588.  

    2. [2]

      (2) Rao, G. S.; Cheng, M. Q.; Zhong, Y.; Deng, X. C.; Yi, F.; Chen, Z. R.; Zhong, Q. L.; Fan, F. R.; Ren, B.; Tian, Z. Q. Acta Phys. -Chim. Sin. 2011, 27, 2373. [饶贵仕, 程美琴, 钟艳, 邓小聪, 易飞, 陈治仁, 钟起玲, 范凤茹, 任斌, 田中群. 物理化学学报, 2011, 27, 2373.]

    3. [3]

      (3) Fugane, K.; Mori, T.; Ou, D. R.; Suzuki, A.; Yoshikawa, H.; Masuda, T.; Uosaki, K.; Yamashita, Y.; Ueda, S.; Kobayashi, K.; Okazaki, N.; Matolinova, I.; Matolin, V. Electrochim. Acta 2011, 56, 3874.  

    4. [4]

      (4) Hara, Y.; Minami, N.; Matsumoto, H.; Itagaki, H. Appl. Catal. A 2007, 332, 289.  

    5. [5]

      (5) Keng, P. Y.; Bull, M. M.; Shim, I. B.; Nebesny, K. G.; Armstrong, N. R.; Sung, Y.; Char, K.; Pyun, J. Chem. Mater. 2011, 23, 1120.  

    6. [6]

      (6) Yin, S. B.; Mu, S. C.; Lv, H. F.; Cheng, N. C.; Pan, M.; Fu, Z. Y. Appl. Catal. B 2010, 93, 233.  

    7. [7]

      (7) Zhou, Z. H.;Wang, S. L.; Zhou,W. J.;Wang, G. X.; Jiang, L. H.; Li,W. Z.; Song, S. Q.; Liu, J. G.; Sun, G. Q.; Xin, Q. Chem. Commun. 2003, 394.

    8. [8]

      (8) Wang, X. Z.; Zheng, J. S.; Fu, R.; Ma, J. X. Acta Phys. -Chim. Sin. 2011, 27, 85. [王喜照, 郑俊生, 符蓉, 马建新. 物理化学学报, 2011, 27, 85.]

    9. [9]

      (9) Shen, P. K.; Yin, S. B.; Li, Z. H.; Chen, C. Electrochim. Acta 2010, 55, 7969.  

    10. [10]

      (10) Yin, S. B.; Luo, L.; Xu, C.; Zhao, Y. L.; Qiang, Y. H.; Mu, S. C. J. Power Sources 2012, 198, 1.  

    11. [11]

      (11) Hu, Z. F.; Chen, C.; Meng, H.;Wang, R. H.; Shen, P. K.; Fu, H. G. Electrochem. Commun. 2011, 13, 763.  

    12. [12]

      (12) Yin, S. B.; Cai, M.;Wang, C. X.; Shen, P. K. Energy Environ. Sci. 2011, 4, 558.  

    13. [13]

      (13) Yin, S. B.; Shen, P. K.; Song, S. Q.; Jiang, S. P. Electrochim. Acta 2009, 54, 6954.  

    14. [14]

      (14) Tian, Z. Q.; Xie, F. Y.; Shen, P. K. J. Mater. Sci. 2004, 39, 1507.  

    15. [15]

      (15) Tian, Z. Q.; Jiang, S. P.; Liang, Y. M.; Shen, P. K. J. Phys. Chem. B 2006, 110, 5343.  

    16. [16]

      (16) Song, S. Q.;Wang, Y.; Shen, P. K. J. Power Sources 2007, 170, 46.  

    17. [17]

      (17) Li, X.; Chen,W. X.; Zhao, J.; Xing,W.; Xu, Z. D. Carbon 2005, 43, 2168.  

    18. [18]

      (18) Li,W. Z.; Liang, C. H.; Zhou,W. J.; Qiu, J. S.; Li, H. Q.; Sun, G. Q.; Xin, Q. Carbon 2004, 42, 436.  

    19. [19]

      (19) Li, Y. L.; Hu, F. P.;Wang, X.; Shen, P. K. Electrochem. Commun. 2008, 10, 1101.  

    20. [20]

      (20) Hu, F. P.; Shen, P. K.; Li, Y. L.; Liang, J. Y.;Wu, J.; Bao, Q. L.; Li, C. M.;Wei, Z. D. Fuel Cells 2008, 8, 429.  

    21. [21]

      (21) Song, S. Q.; Yin, S. B.; Li, Z. H.; Shen, P. K.; Fu, R.W.;Wu, D. C. J. Power Sources 2010, 195, 1946.  

    22. [22]

      (22) Patterson, A. L. Phys. Rev. 1939, 56, 978.  

    23. [23]

      (23) Radmilovic, V.; Gasteiger, H. A.; Ross, P. N. J. Catal. 1995, 154, 98.  

    24. [24]

      (24) Xing, Y. C.; Li, L.; Chusuei, C. C.; Hull, R. V. Langmuir 2005, 21, 4185.  

    25. [25]

      (25) Xing, Y. J. Phys. Chem. B 2004, 108, 19255.  

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    11. [11]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    12. [12]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    13. [13]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    14. [14]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(731)
  • Abstract views(2484)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return