Citation: ZHUANG Ke, QIU Jing, XU Bo-Lian, FAN Yi-Ning. Promotional Effect of Cerium Oxide on the Catalytic Properties of Ce-Mn-Ti-O Catalysts for Selective Catalytic Reduction of NO[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 681-685. doi: 10.3866/PKU.WHXB201111141
-
The promotional effect of cerium oxide on the catalytic properties of Ce-Mn-Ti-O composite oxide catalysts prepared by the sol-gel method was studied using NH3-temperature programmed desorption (NH3-TPD), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR), and BET surface area measurements combined with microreactor tests of NO selective catalytic reduction (SCR). The results showed that the addition of a cerium oxide component remarkably increased the low-temperature SCR activity of Mn-Ti-O composite oxide catalyst. When the cerium content was increased, NO conversion increased significantly and reached a maximum around Ce/Mn molar ratio of 0.08. Further increases in the cerium content resulted in a decrease in NO conversion over the catalyst. The experimental results indicated that the addition of a cerium oxide component does not influence the surface acidity of Mn-Ti-O composite oxide catalyst, but increases the surface concentration of catalytically active Mn species, the relative content of Mn4+, and the reducibility of Mn species, leading to an increase in the SCR activity of Ce-Mn-Ti-O composite oxide catalysts. When the Ce/Mn molar ratio was greater than 0.08, the formation of amorphous multilayer Ce-O-Mn species composed of Ce and Mn species may reduce the Mn/Ti molar ratio and the reducibility of Mn species, leading to a decrease in the SCR activity of Ce-Mn-Ti-O composite oxide catalysts.
-
-
[1]
(1) Smirniotis, P. G.; Sreekanth, P. M.; Pena, D. A.; Jenkins, R. G. Ind. Eng. Chem. Res. 2006, 45, 6436.
-
[2]
(2) Ettireddy, P. R.; Ettireddy, N.; Mamedov, S.; Boolchand, P.; Smirniotis, P. G. Appl. Catal. B 2007, 76, 123.
-
[3]
(3) Smirniotis, P. G.; Pena, D. A.; Uphade, B. S. Angew. Chem. Int. Edit. 2001, 40, 2479.
-
[4]
(4) Pena, D. A.; Uphade, B. S.; Smirniotis, P. G. J. Catal. 2004, 221, 421.
-
[5]
(5) Qi, G. S.; Yang, R. T. Appl. Catal. B 2003, 44, 217.
-
[6]
(6) Shen, B. X.; Liu, T. Acta Phys. -Chim. Sin. 2010, 26, 3009. [沈伯雄, 刘亭. 物理化学学报, 2010, 26, 3009.]
-
[7]
(7) Lin, T.; Zhang, Q. L.; Li,W.; ng, M. C.; Xing, Y. X.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2008, 24, 1127. [林涛, 张秋林, 李伟, 龚茂处, 幸怡汛, 陈耀强. 物理化学学报, 2008, 24, 1127.]
-
[8]
(8) Aylor, A.W.; Lobree, L. J.; Reimer, J. A.; Bell, A. T. J. Catal. 1997, 170, 390.
-
[9]
(9) Wu, Z.; Jiang, B. Q.; Liu, Y. Appl. Catal. B 2008, 79, 347.
-
[10]
(10) Sreekanth, P. M.; Pena, D. A.; Smirniotis, P. G. Ind. Eng. Chem. Res. 2006, 45, 6444.
-
[11]
(11) Long, R. Q.; Yang, R. T.; Chang, R. Chem. Commun. 2002, 452.
-
[12]
(12) Carja, G.; Kameshima, Y.; Okada, K.; Madhusoodana, C. D. Appl. Catal. B 2007, 73, 60.
-
[13]
(13) Roy, S.; Viswanath, B.; Hegde, M. S.; Madras, G. J. Phys. Chem. C 2008, 112, 6002.
-
[14]
(14) Wu, Z. B.; Jiang, B. Q.; Liu, Y.; Zhao,W. R.; Guan, B. H. J. Hazard. Mater. 2007, 145, 488.
-
[15]
(15) Qi, G.; Yang, R. T. J. Catal. 2003, 217, 434.
-
[16]
(16) Tang, X.; Hao, J.; Yi, H.; Li, J. Catal. Today 2007, 126, 406.
-
[17]
(17) Qi, G.; Yang, R. T.; Chang, R. Appl. Catal. B 2004, 51, 93.
-
[18]
(18) Wu, Z. B.; Jin, R. B.; Liu, Y.;Wang, H. Q. Catal. Commun. 2008, 9, 2217.
-
[19]
(19) Kim, Y. J.; Kwon, H. J.; Nam, I. S.; Choung, J.W.; Kil, J. K.; Kim, H. J.; Cha, M. S.; Yeo, G. K. Catal. Today 2010, 151, 244.
-
[20]
(20) Marín, P.; Fissore, D.; Barresi, A. A.; Ordóñez, S. Chemical Engineering and Processing: Process Intensification 2009, 48, 311.
-
[21]
(21) Tang, F.; Xu, B.; Shi, H.; Qiu, J.; Fan, Y. Appl. Catal. B 2010, 94, 71.
-
[22]
(22) Ni, Z.; Chen, A.; Fang, C.;Wang, L.; Yu,W. J. Phys. Chem. Solids 2009, 70, 632.
-
[23]
(23) Ballarini, N.; Cavani, F.; Marion, P.; Tonielli, N.; Trifirò, F. Catal. Today 2009, 142, 170.
-
[24]
(24) Cheng, R.; Shu, Y.; Li, L.; Zheng, M.;Wang, X.;Wang, A.; Zhang, T. Appl. Catal. A 2007, 316, 160.
-
[25]
(25) Heinrich, F.; Schmidt, C.; Löffler, E.; Menzel, M.; Grünert,W. J. Catal. 2002, 212, 157.
-
[26]
(26) Martínez-Arias, A.; Fernández-García, M.; Soria, J.; Conesa, J. C. J. Catal. 1999, 182, 367.
-
[27]
(27) Tsuji, T.; Nagao, M.; Yamamura, Y.; Tien Tai, N. Solid State Ionics 2002, 154-155, 381.
-
[28]
(28) Villaseñor, J.; Reyes, P.; Pecchi, G. Catal. Today 2002, 76, 121.
-
[29]
(29) Mohamed, M. M.; Othman, I.; Mohamed, R. M. Journal of Photochemistry and Photobiology A: Chemistry 2007, 191, 153.
- [30]
-
[31]
(31) Nguyen, T. D.; Dinh, C. T.; Do, T. O. Inorganic Chemistry 2011, 50, 1309.
-
[32]
(32) Xu,W. Q.; Yu, Y. B.; Zhang, C. B.; He, H. Catal. Commun. 2008, 9, 1453.
-
[33]
(33) Li, H.; Qi, G.; Tana; Zhang, X.; Huang, X.; Li,W.; Shen,W. Appl. Catal. B 2011, 103, 54.
-
[34]
(34) Borker, P.; Salker, A. V. Materials Chemistry and Physics 2007, 103, 366.
-
[35]
(35) Kapteijn, F.; Sin redjo, L.; Andreini, A.; Moulijn, J. A. Appl. Catal. B 1994, 3, 173.
-
[1]
-
-
[1]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[2]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[3]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[4]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[5]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[6]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[7]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[8]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[9]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[10]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[11]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[12]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[13]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[14]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[15]
Rong Tian , Yadi Yang , Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064
-
[16]
Hui Shi , Shuangyan Huan , Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042
-
[17]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[18]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[19]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[20]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[1]
Metrics
- PDF Downloads(811)
- Abstract views(2327)
- HTML views(22)