Citation: ZHANG Yong, XIAO Zhong-Dang. Brownian Dynamics Simulation of Three Nonlinear Interactions on the Folding Process of Single Completely Stretched DNA Chain[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2705-2710. doi: 10.3866/PKU.WHXB20111111 shu

Brownian Dynamics Simulation of Three Nonlinear Interactions on the Folding Process of Single Completely Stretched DNA Chain

  • Received Date: 23 May 2011
    Available Online: 2 September 2011

    Fund Project: 国家自然科学基金(20875014, 30901285)资助项目 (20875014, 30901285)

  • The folding dynamics of a completely stretched dexoxyribonucleic acid (DNA) molecule chain is an important feature of single DNA mechanics. By constructing a fully parameterized bead-spring chain model and applying a highly efficient second order semi-implicit predictor-corrector al rithm, we studied the influence of three nonlinear interactions including the excluded volume interaction, the finite extensible nonlinear elastic interaction, and the fluctuating hydrodynamic interaction on the folding process. Simulation results show that the excluded volume interaction decreases the relative radius of gyration of the DNA chain obviously but has no influence on the relaxation time. Instead, the hydrodynamic interaction clearly decreases the relaxation time but it does not change the relative radius of gyration. In addition, the finite extensible elastic interaction was found to decrease the relative radius of gyration of the short chain clearly and increase the relaxation time of the long chain obviously. Furthermore, we obtained a smooth change for the relative radius of gyration with time. The scaling exponent of the relaxation time with the length of chain has two different values under all three nonlinear interactions. These results complete our understanding about single DNA molecule chain mechanics in solution.
  • 加载中
    1. [1]

      (1) Rivetti, C.; Guthold, M.; Bustamante, C. J. Mol. Biol. 1996, 264, 919.  

    2. [2]

      (2) Valle, F.; Favre, M. E.; De Los Rios, P.; Rosa, A.; Dietler, G. Phys. Rev. Lett. 2005, 95, 158105.  

    3. [3]

      (3) Maier, B.; Rädler, J. O. Phys. Rev. Lett. 1999, 82, 1911.  

    4. [4]

      (4) Maier, B.; Rädler, J. O. Macromolecules 2000, 33, 7185.  

    5. [5]

      (5) Hsieh, C.; Li, L.; Larson, R. G. J. Non-Newton. Fluid 2003, 113, 147.  

    6. [6]

      (6) Somasi, M.; Khomami, B.;Woo, N. J.; Hur, J. S.; Shaqfeh, E. S. G. J. Non-Newton. Fluid 2002, 108, 227.  

    7. [7]

      (7) Jendrejack, R. M.; de Pablo, J. J.; Graham, M. D. J. Chem. Phys. 2002, 116, 7752.  

    8. [8]

      (8) Schroeder, C. M.; Shaqfeh, E. S. G.; Chu, S. Macromolecules 2004, 37, 9242.  

    9. [9]

      (9) Ibáñez-García, G. O.; Hanna, S. Soft Matter 2009, 5, 4464.  

    10. [10]

      (10) Prabhakar, R.; Prakash, J. R. J. Non-Newton. Fluid 2004, 116, 163.  

    11. [11]

      (11) Jendrejack, R. M.; Graham, M. D.; Pablo, J. J. D. J. Chem. Phys. 2000, 113, 2894.  

    12. [12]

      (12) Rotne, J.; Prager, S. J. Chem. Phys. 1969, 50, 4831.  

    13. [13]

      (13) Hoda, N.; Kumar, S. Phys. Rev. E 2009, 79, 208011.

    14. [14]

      (14) Li, L.; Larson, R. G.; Sridhar, T. J. Rheol. 2000, 44, 291.  

    15. [15]

      (15) Öttinger, H. C. Stochastic Processes in Polymeric Fluids; Springer Press: Berlin, 1996.  

    16. [16]

      (16) Smith, D. E.; Perkins, T. T.; Chu, S. Macromolecules 1996, 29, 1372.  

    17. [17]

      (17) Smith, D. E.; Chu, S. Science 1998, 281, 1335.  

    18. [18]

      (18) Smith, D. E.; Babcock, H. P.; Chu, S. Science 1999, 283, 1724.  

    19. [19]

      (19) Reese, H. R.; Zimm, R. H. J. Chem. Phys. 1990, 92, 2650.  

    20. [20]

      (20) Rakwoo, C.; Yethiraj, A. J. Chem. Phys. 2001, 114, 7688.  

    21. [21]

      (21) Pham, T. T.; Bajaj, M.; Prakash, J. R. Soft Matter 2008, 4, 1196.  

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    3. [3]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    15. [15]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    16. [16]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    17. [17]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    18. [18]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    19. [19]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    20. [20]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

Metrics
  • PDF Downloads(660)
  • Abstract views(2216)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return