Citation: LIU Jian, ZHAO Zhen, WANG Hong-Xuan, DUAN Ai-Jun, JIANG Gui-Yuan. Selective Oxidation Performance of Propane over Supported Vanadium Oxide Catalysts[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2659-2664. doi: 10.3866/PKU.WHXB20111108 shu

Selective Oxidation Performance of Propane over Supported Vanadium Oxide Catalysts

  • Received Date: 7 June 2011
    Available Online: 31 August 2011

    Fund Project: 新世纪优秀人才支持计划(NCET-10-0811) (NCET-10-0811) 高等学校博士点基金(200804251016) (200804251016) 国家自然科学基金(20803093, 20833011) (20803093, 20833011) 国家高技术研究发展计划(863) (2006AA06Z313) (863) (2006AA06Z313)中石油项目及创新基金(2010D-4604-0402)资助项目 (2010D-4604-0402)

  • A series of SBA-15 supported vanadium oxide catalysts with different active components were prepared by the method of incipient-wet impregnation. The structures of the catalysts were characterized by N2 adsorption, X-ray diffraction (XRD), ultraviolet (UV)-Raman, Fourier transform infrared (FTIR), and ultraviolet-visble diffuse reflectance spectroscopy (UV-Vis DRS) techniques, and their catalytic performances for the selective oxidation of propane were investigated. The results showed that SBA-15 was a better support in the catalyst system than SiO2 for the selective oxidation of propane to aldehydes. The SBA-15 supported low loading catalyst is a highly dispersed catalyst system and the SBA-15 supported vanadium oxide samples with low loading (n(V)/n(Si)<2.5%) have ordered hexa nal mesostructures. For the VOx/SBA-15 catalysts, isolated vanadyl species with tetrahedral coordination are the active sites for aldehyde formation at very low loadings of vanadium (n(V)/n(Si)<0.1%). The polymeric vanadyl species with octahedral coordination and microcrystalline vanadium oxide are active sites for the oxidative dehydrogenation or deep oxidation of propane when the loading of vanadium (n(V)/n(Si)) is higher than 2.5%.
  • 加载中
    1. [1]

      (1) Lou, Y.;Wang, H.; Zhang, Q.;Wang, Y. J. Catal. 2007, 24,245.

    2. [2]

      (2) Liu, Y. M.; Cao, Y.; Yi, N. J. Catal. 2004, 224, 417.  

    3. [3]

      (3) Zhang, Z.; Zhao, Z.; Xu, C.; Duan, A.; Sha, S.; Zhang, Y.; Dou, T. Chem. Lett. 2005, 34, 1080.  

    4. [4]

      (4) Zhao, D.; Feng, J.; Hou, Q.; Melosh, N.; Fredrickson, G.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279. 548.

    5. [5]

      (5) Gao, X.T.; Bare, S. R.;Weckhuysen, B.M. J. Phys. Chem. B 1998, 102, 10842

    6. [6]

      (6) Li, C. J. Catal. 2003, 216, 203

    7. [7]

      (7) Li, Y. Study on the Synthesis, Characterisation and Catalytic Performances of Al-SBA-15 and Fe-SBA-15. Ph.D. Dissertation, Graduate Institution in Chinese Academy of Sciences, Dalian, 2005. [李瑛. Al-SBA-15和Fe-SBA-15的合成、表征及催化性能的研究[D]. 大连: 中国科学院研究生院, 2005.]

    8. [8]

      (8) Zhu, J.H.; Shen,W.; Xu, H.L. Chin. J. Chem. 2003, 61, 202. [朱金华, 沈伟, 徐华龙. 化学学报. 2003, 61, 202.]

    9. [9]

      (9) Liu, S.; Du, Y. C.; Xiao, N. Chin. J. Catal. 2008, 29, 468. [刘森, 杜耘辰, 肖霓. 催化学报. 2008, 29, 468.]

    10. [10]

      (10) Gui, J. Z.; Du, J. L.; Liu, D. Chin. Ind. Catal. 2006, 14, 56. [桂建舟, 杜建亮, 刘丹. 工业催化, 2006, 14, 56.]

    11. [11]

      (11) Khodakov, A.; Olthof, B.; Bell, A. T. J. Catal. 1999, 181, 205.  

    12. [12]

      (12) Blasco, T.; Galli, A.; Nieto, J. M. L. J. Catal. 1997, 169, 203.  

    13. [13]

      (13) Tanaka, T.; Nishimura, Y.; Kawasaki, S. J. Catal. 1989, 118, 327.  

    14. [14]

      (14) Corma, A.; Lopez, J. M. Appl. Catal. A 1993, 104, 161.  

    15. [15]

      (15) Blasco, T. C.; Lopez, N.; Perez-Pariente, J. J. Catal. 1995, 152, 1.  

    16. [16]

      (16) Liu, J.; Zhao, Z.; Zhang, Z.; Xu, C. M.; Duan, A. J.; Jiang, G. Y. Acta Phys. -Chim. Sin. 2009, 25, 2467. [刘坚, 赵震, 张哲, 徐春明, 段爱军, 姜桂元. 物理化学学报2009, 25, 2467.]

    17. [17]

      (17) Zhao, Z.; Yamada, Y.; Teng, Y.; Ueda, A.; Nakagawa, K.; Kobayashi, T. J. Catal. 2000 190, 215.  

    18. [18]

      (18) Li, Y.; Feng, Z.; Lian, Y.; Sun, K.; Zhang, L.; Jia, G.; Yang, Q.; Li, C. Microporous Mesoporous Mat. 2005, 84, 41.  

    19. [19]

      (19) He, Y. M.;Wu, Y.; Yi, X. D.;Weng,W. Z.;Wan, H. L. J. Mol. Catal. 2010, 331, 1.  

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    5. [5]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    19. [19]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(760)
  • Abstract views(2930)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return