Citation: LIU Dong-Yang, CHENG Jie, PAN Jun-Qing, WEN Yue-Hua, CAO Gao-Ping, YANG Yu-Sheng. All-Lead Redox Flow Battery in a Fluoroboric Acid Electrolyte[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2571-2576. doi: 10.3866/PKU.WHXB20111105 shu

All-Lead Redox Flow Battery in a Fluoroboric Acid Electrolyte

  • Received Date: 8 June 2011
    Available Online: 29 August 2011

    Fund Project: 国家重点基础研究发展计划项目(973) (2010CB227204) (973) (2010CB227204)国家自然科学基金(50804050)资助 (50804050)

  • An all-lead redox flow battery in a fluoroboric acid electrolyte is proposed. The same electrolyte was used as both the negative and positive electrodes, and it consists of a high concentration solution of Pb(BF4)2 in aqueous fluoroboric acid, i.e., 0.1, 0.5, 1.0 and 1.5 mol·L-1 Pb(BF4)2 in 1.0 mol·L-1 HBF4. The properties of the graphite and glassy carbon electrodes for both the positive and negative electrodes as current collectors were compared using cyclic voltammetry. We found that the graphite substrate was better than glassy carbon for both the negative electrode and the positive electrode. The all-lead redox flow battery was constructed using graphite substrates as both the positive and negative electrodes with a single electrolyte flow passing though the two electrodes. The performance of the batteries was evaluated using the constant current charge/discharge technique. Typically, an average coulombic efficiency of above 87% and an average energy efficiency of above 68% were obtained. An average energy efficiency of above 74% was achieved with electrolyte containing 1.0 or 1.5 mol·L-1 Pb(BF4)2 + 1.0 mol·L-1 HBF4 at current densities of 10 and 20 mA×cm-2.
  • 加载中
    1. [1]

      (1) Yang, Y. S.; Zhang, L.;Wen, Y. H.; Cheng, J.; Cao, G. P. Chin. J. Power Sources 2007, 31, 175.

    2. [2]

      (2) Dell, R. M. Solid State Ionics 2000, 134, 139.  

    3. [3]

      (3) Pan, J. Q.; Sun, Y. Z.;Wang, Z. H.;Wan, P. Y.; Liu, X. G.; Fan, M. H. J. Mater. Chem. 2007, 17, 4820.  

    4. [4]

      (4) Bae, C. H.; Roberts, E. P. L.; Dryfe, R. A.W. Electrochim. Acta 2002, 48, 279.  

    5. [5]

      (5) Thaller, L. H. Electrically Rechargeable Redox Flow Cell. US Patent 3996064, 1974.

    6. [6]

      (6) Wang,W. H.;Wang, X. D. Electrochim. Acta 2007, 52, 6755.  

    7. [7]

      (7) Wen, Y. H.; Zhang, H. M.; Qian, P.; Zhao, P.; Zhou, H. T.; Yi, B. L. Acta Phys.-Chim. Sin. 2006, 22, 403.  

    8. [8]

      (8) Zhao, P.; Zhang, H. M.; Zhou, H. T.; Chen, J.; Gao, S. J.; Yi, B. L. J. Power Sources 2006, 162, 1416.  

    9. [9]

      (9) Skyllas-Kazacos, M. J. Power Sources 2003, 124, 299.  

    10. [10]

      (10) Oriji, G.; Katayama, Y.; Miura, T. Electrochim. Acta 2004, 49, 3091.  

    11. [11]

      (11) Hazza, A.; Pletcher, D.;Wills, R. Phys. Chem. Chem. Phys. 2004, 6, 1773.

    12. [12]

      (12) Pletcher, D.;Wills, R. Phys. Chem. Chem. Phys. 2004, 6, 1779.

    13. [13]

      (13) Pletcher, D.;Wills, R. J. Power Sources 2005, 149, 96.  

    14. [14]

      (14) Hazza, A.; Pletcher, D.;Wills, R. J. Power Sources 2005, 149, 103.  

    15. [15]

      (15) Pletcher, D.; Zhou, H. T.; Kear, G.; John, Low C. T.;Walsh, F. C.;Wills, R. G. A. J. Power Sources 2008, 180, 621.  

    16. [16]

      (16) Pletcher, D.; Zhou, H. T.; Kear, G.; John, L. C. T.;Walsh, F. C.; Wills, R. G. A. J. Power Sources 2008, 180, 630.  

    17. [17]

      (17) Li, X. H.; Pletcher, D.;Walsh, F. C. Electrochim. Acta 2009, 54, 4688.  

    18. [18]

      (18) Collins, J.; Kear, G.; Li, X. H.; Low, C. T. J.; Pletcher, D.; Tangirala, R.; Duncan,S.C.;Walsh, F. C.; Zhang, C. P. J. Power Sources 2010, 195, 1731.  

    19. [19]

      (19) Zeng, H. L.;Wu, Z. D.; Chen, J.W.; Lǚ, P. R.; Qin. Y.W. Handbook of Electroplate Technology, 2nd ed.; China Machine Press: Beijing, 1997; pp 243-245. [曾华梁, 吴仲达, 陈钧武, 吕佩仁, 秦月文. 电镀工艺手册. 第二版. 北京: 机械工业出版社, 1997: 243-245.]

    20. [20]

      (20) Bernardi, D.; Pawlikowski, E.; Newman, J. J. Electrochem. Soc. 1985, 132, 5.  

  • 加载中
    1. [1]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    4. [4]

      Jinglun Wang Hu Zhou Baishu Zheng Guobin Li Ming Yue Zhihua Zhou . Exploration and Practice of “Four Cooperations and Four Integrations” to Cultivate Innovative Talents in Chemical Materials in Local Colleges. University Chemistry, 2024, 39(7): 93-98. doi: 10.12461/PKU.DXHX202405013

    5. [5]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    6. [6]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    9. [9]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    10. [10]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    11. [11]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    12. [12]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    13. [13]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    14. [14]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    17. [17]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    20. [20]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

Metrics
  • PDF Downloads(917)
  • Abstract views(2766)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return