Citation: WANG Shao-Liang, TANG Zhi-Yuan, SHA Ou, YAN Ji. Synthesis and Electrochemical Performance of LiCoPO4 by Sol-Gel Method[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 343-348. doi: 10.3866/PKU.WHXB201111031 shu

Synthesis and Electrochemical Performance of LiCoPO4 by Sol-Gel Method

  • Received Date: 19 August 2011
    Available Online: 3 November 2011

    Fund Project: 国家自然科学基金(20973124)资助项目 (20973124)

  • High potential cathode material LiCoPO4 was synthesized by sol-gel method. The effects of different sintering conditions on the crystal structure, surface morphology and electrochemical performance of LiCoPO4 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge-discharge tests. The results show that the sample synthesized at 650 ° C for 12 h has a od crystalline orthorhombic olivine-type structure and a uniform particle distribution (0.2-0.4 μm), which delivers the best electrochemical performance. The discharge capacity of the sample at 1C rate can reach 122.7 mAh·g-1. Moreover, from the charge and discharge profiles, two charge/discharge plateaus are presented and they become more obvious with the increase of charge/discharge rate. This phenomenon can be interpreted by considering the two-step extraction/insertion behavior of Li+ in LiCoPO4.
  • 加载中
    1. [1]

      (1) Murugan, A. V.; Muraliganth, T.; Ferreira, P. J.; Manthiram, A. Inorg. Chem. 2009, 48, 946.  

    2. [2]

      (2) Fisher, C. A. J.; Prieto V. M. H.; Islam, M. S. Chem. Mater. 2008, 20, 5907.  

    3. [3]

      (3) Muraliganth, T.; Manthiram, A. J. Phys. Chem. C 2010, 114, 15530.  

    4. [4]

      (4) Yang, J. S.; Xu, J. J. J. Electrochem. Soc. 2006, 153, A716.

    5. [5]

      (5) Murugan, A. V.; Muraliganth, T.; Manthiram, A. J. Electrochem. Soc. 2009, 156, A79.

    6. [6]

      (6) Li, H. H.; Jin, J.;Wei, J. P.; Zhou, Z.; Yan, J. Electrochem. Commun. 2009, 11, 95.  

    7. [7]

      (7) Jang, I. C.; Lim, H. H.; Lee, S. B.; Karthikeyan, K.; Aravindan, V.; Kang, K.S.; Yoon,W. S.; Cho,W. I.; Lee, Y. S. J. Alloys. Compd. 2010, 497, 321.  

    8. [8]

      (8) Han, D.W.; Kang, Y. M.; Yin, R. Z.; Song, M. S.; Kwon, H. S. Electrochem. Commun. 2009, 11, 137.  

    9. [9]

      (9) Wang, F.; Yang, J.; Nuli Y. N.;Wang J. L. J. Power Sources 2011, 196, 4806.  

    10. [10]

      (10) Zhao, Y. J.;Wang, S. J.; Zhao, C. S.; Xia, D. G. Rare Metals 2009, 28, 17.

    11. [11]

      (11) Bhuwaneswari, M. S.; Dimesso, L.; Jaegermann,W. J. Sol-Gel Sci. Technol. 2010, 56, 320.  

    12. [12]

      (12) Poovizhi, P. N.; Selladurai, S. Ionics 2011, 17, 13

    13. [13]

      (13) Gangulibabu; Bhuvaneswari, D.; Kalaiselvi, N.; Jayaprakash, N.; Periasamy, P. J. Sol-Gel Sci Technol. 2009, 49, 137.  

    14. [14]

      (14) Lucangelo, D.; Susanne, J.; Christina, S.;Wolfram, J. J. Solid State 2011 (accepted).

    15. [15]

      (15) Huang, Y. H.; Tong, Z. F.;Wei, T. Y.; Li, B. Acta Phys. -Chim. Sin. 2011, 27, 1325. [黄映恒, 童张法, 韦藤幼, 李斌. 物理化学学报, 2011, 27, 1325]

    16. [16]

      (16) Tong, H.; Hu, G. H.; Hu, G. R.; Peng, Z. D.; Zhang, X. L. Chin. J. Inorg. Chem. 2006, 22, 2159. [童汇, 胡国华, 胡国荣, 彭忠东, 张新龙. 无机化学学报, 2006, 22, 2159.]

    17. [17]

      (17) Park, K. S.; Kang, K. T.; Lee, S. B.; Kim, G. Y.; Park, Y. J.; Kim, H. G. Mater. Res. Bull. 2004, 39, 1803.  

    18. [18]

      (18) Bramnik, N. N.; Bramnik, K. G.; Buhrmester, T.; Baehtz, C.; Ehrenberg, H.; Fuess, H. J. Solid State Eletrochem. 2004, 8, 558.

    19. [19]

      (19) Bramnik, N. N.; Nikolowski, K.; Baehtz, C.; Bramnik, K. G.; Ehrenberg, H. Chem. Mater. 2007, 19, 908.  

    20. [20]

      (20) Nakayama, M.; to, S.; Uchimoto, Y.;Wakihara, M.; Kitajima, Y. Chem. Mater. 2004, 16, 3399.  

    21. [21]

      (21) Tang, Z. Y.; Xue, J. J.; Liu, C. Y.; Zhuang, X. G. Acta Phys. -Chim. Sin. 2001, 17, 385. [唐致远, 薛建军, 刘春燕, 庄新国. 物理化学学报, 2001, 17, 385.]

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    14. [14]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(1335)
  • Abstract views(2197)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return