Citation: XIE Peng-Yang, ZHUANG Gui-Lin, LÜ Yong-An, WANG Jian-Guo, LI Xiao-Nian. Enhanced Bonding between Noble Metal Adatoms and Graphene with Point Defects[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 331-337. doi: 10.3866/PKU.WHXB201111021 shu

Enhanced Bonding between Noble Metal Adatoms and Graphene with Point Defects

  • Corresponding author: LI Xiao-Nian, 
  • Received Date: 22 July 2011
    Available Online: 2 November 2011

    Fund Project: 国家自然科学基金(20906081)资助项目 (20906081)

  • The adhesion of Ag, Au, and Pt adatoms on pristine graphene and that containing point defects including N-substitution, B-substitution, and a single vacancy, as well as the interfacial properties of these systems, were investigated using density functional theory. The calculations show that Ag and Au cannot bind to pristine graphene. In contrast, B and N-doping increase the interaction between Ag, Au, or Pt metal adatoms and graphene, while a vacancy defect leads to the strong chemisorption of metal adatoms on graphene. Based on electronic structural analysis, N-doping strengthens the covalent bond between Au or Pt and carbon atoms, while B-doping leads to the formation of a chemical bond between Au or Ag and B. The vacancy defect acts as an anchoring site for metal adatoms and increases the bonding between metal adatoms and carbon atoms. Therefore, three types of point defect can effectively enhance the interaction between noble metal adatoms and graphene in the sequence: vacancy defect>>B-doping>N-doping.
  • 加载中
    1. [1]

      (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  

    2. [2]

      (2) Li, H.; Ma, X. Y.; Dong, J.; Qian,W. P. Anal. Chem. 2009, 81, 8916.  

    3. [3]

      (3) Li, Y. F.; Zhou, Z.; Shen, P.W.; Chen, Z. F. Acs Nano 2009, 3, 1952.  

    4. [4]

      (4) Saha, B.; Shindo, S.; Irle, S.; Morokuma, K. Acs Nano 2009, 3, 2241.  

    5. [5]

      (5) Xu, X. L.; Zhou, G. L.; Li, H. X.; Liu, Q.; Zhang, S.; Kong, J. L. Talanta 2009, 78, 26.  

    6. [6]

      (6) Yang, Y. H.; Sun, H. J.; Peng, T. J.; Huang, Q. Acta Phys. -Chim. Sin. 2011, 27, 736. [杨勇辉, 孙红娟, 彭同江, 黄桥. 物理化学学报, 2011, 27, 736.]

    7. [7]

      (7) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26, 2073.]

    8. [8]

      (8) Xu, N.; Kong, F. J.;Wang, Y. Z. Acta Phys. -Chim. Sin. 2011, 27, 559. [徐宁, 孔凡杰, 王延宗. 物理化学学报, 2011, 27, 559.]

    9. [9]

      (9) Sun, D. L.; Peng, S. L.; Ouyang, J.; Ouyang, F. P. Acta Phys. -Chim. Sin. 2011, 27, 1103. [孙大立, 彭盛霖, 欧阳俊, 欧阳方平. 物理化学学报, 2011, 27, 1103.]

    10. [10]

      (10) Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Science 2007, 315, 220.  

    11. [11]

      (11) Yoon, B.; Hakkinen, H.; Landman, U.;Worz, A. S.; Antonietti, J. M.; Abbet, S.; Judai, K.; Heiz, U. Science 2005, 307, 403.  

    12. [12]

      (12) Matthey, D.;Wang, J. G.;Wendt, S.; Matthiesen, J.; Schaub, R.; Laegsgaard, E.; Hammer, B.; Besenbacher, F. Science 2007, 315, 1692.  

    13. [13]

      (13) DeVries, G. A.; Brunnbauer, M.; Hu, Y.; Jackson, A. M.; Long, B.; Neltner, B. T.; Uzun, O.;Wunsch, B. H.; Stellacci, F. Science 2007, 315, 358.  

    14. [14]

      (14) Park, S.; Lee, K. S.; Bozoklu, G.; Cai,W.; Nguyen, S. T.; Ruoff, R. S. Acs Nano 2008, 2, 572

    15. [15]

      (15) Lightcap, I. V.; Kosel, T. H.; Kamat, P. V. Nano Lett. 2010, 10, 577.  

    16. [16]

      (16) Li, B.; Lu, G.; Zhou, X. Z.; Cao, X. H.; Boey, F.; Zhang, H. Langmuir 2009, 25, 10455.  

    17. [17]

      (17) Klusek, Z.; Dabrowski, P.; Kowalczyk, P.; Kozlowski,W.; Olejniczak,W.; Blake, P.; Szybowicz, M.; Runka, T. Appl. Phys. Lett. 2009, 95, 113114.  

    18. [18]

      (18) Li, Y. X.;Wei, Z. D.; Zhao, Q. L.; Ding,W.; Zhang, Q.; Chen, S. G. Acta Phys. -Chim. Sin. 2011, 27, 858. [李云霞, 魏子栋, 赵巧玲, 丁炜, 张骞, 陈四国. 物理化学学报, 2011, 27, 858.]

    19. [19]

      (19) Wu, X. Q.; Zong, R. L.; Mu, H. J.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2010, 26, 3002. [吴小琴, 宗瑞隆, 牟豪杰, 朱永法. 物理化学学报, 2010, 26, 3002.]

    20. [20]

      (20) Wen, Z. L.; Yang, S. D.; Song, Q. J.; Hao, L.; Zhang, X. G. Acta Phys. -Chim. Sin. 2010, 26, 1570. [温祝亮, 杨苏东, 宋启军, 郝亮, 张校刚. 物理化学学报, 2010, 26, 1570.]

    21. [21]

      (21) Sutter, P.; Hybertsen, M. S.; Sadowski, J. T.; Sutter, E. Nano Lett. 2009, 9, 2654.  

    22. [22]

      (22) Xu, C.;Wang, X.; Zhu, J.W. J. Phys. Chem. C 2008, 112, 19841.  

    23. [23]

      (23) Jasuja, K.; Berry, V. Acs Nano 2009, 3, 2358.  

    24. [24]

      (24) Fullam, S.; Cottell, D.; Rensmo, H.; Fitzmaurice, D. Adv. Mater. 2000, 12, 1430.  

    25. [25]

      (25) Carrillo, A.; Swartz, J. A.; Gamba, J. M.; Kane, R. S.; Chakrapani, N.;Wei, B. Q.; Ajayan, P. M. Nano Lett. 2003, 3, 1437.  

    26. [26]

      (26) Li, J.; Moskovits, M.; Haslett, T. L. Chem. Mater. 1998, 10, 1963.  

    27. [27]

      (27) Azamian, B. R.; Coleman, K. S.; Davis, J. J.; Hanson, N.; Green, M. L. H. Chem. Commun. 2002, 366.

    28. [28]

      (28) Marsh, D. H.; Rance, G. A.; Whitby, R. J.; Giustiniano, F.; Khlobystov, A. N. J. Mater. Chem. 2008, 18, 2249.  

    29. [29]

      (29) Liu, L.;Wang, T. X.; Li, J. X.; Guo, Z. X.; Dai, L. M.; Zhang, D. Q.; Zhu, D. B. Chem. Phys. Lett. 2003, 367, 747.  

    30. [30]

      (30) Li, J.; Liu, C. Y. Eur. J. Inorg. Chem. 2010, 8, 1244.

    31. [31]

      (31) Pasricha, R.; Gupta, S.; Srivastava, A. K. Small 2009, 5, 2253.  

    32. [32]

      (32) Shen, J. F.; Shi, M.; Li, N.; Yan, B.; Ma, H.W.; Hu, Y. Z.; Ye, M. X. Nano Res. 2010, 3, 339.  

    33. [33]

      (33) Wen, Y. Q.; Xing, F. F.; He, S. J.; Song, S. P.;Wang, L. H.; Long, Y. T.; Li, D.; Fan, C. H. Chem. Commun. 2010, 46, 2596.  

    34. [34]

      (34) Liu, S.;Wang, J. Q.; Zeng, J.; Ou, J. F.; Li, Z. P.; Liu, X. H.; Yang, S. R. J. Power Sources 2010, 195, 4628.  

    35. [35]

      (35) Liu,W. C.; Lin, H. K.; Chen, Y. L.; Lee, C. Y.; Chiu, H. T. Acs Nano 2010, 4, 4149.  

    36. [36]

      (36) Kim, Y. K.; Na, H. K.; Min, D. H. Langmuir 2010, 26, 13065.  

    37. [37]

      (37) Zhang, Y.; Franklin, N.W.; Chen, R. J.; Dai, H. J. Chem. Phys. Lett. 2000, 331, 35.  

    38. [38]

      (38) Gingery, D.; Buhlmann, P. Carbon 2008, 46, 1966.  

    39. [39]

      (39) Bittencourt, C.; Felten, A.; Douhard, B.; Ghijsen, J.; Johnson, R. L.; Drube,W.; Pireaux, J. J. Chem. Phys. 2006, 328, 385.

    40. [40]

      (40) Wei, D. C.; Liu, Y. Q.;Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Nano Lett. 2009, 9, 1752.  

    41. [41]

      (41) Ghosh, K.; Kumar, M.; Maruyama, T.; Ando, Y. J. Mater. Chem. 2010, 20, 4128.  

    42. [42]

      (42) Liang, Y. X.; Shui, M.; Li, R. S. Acta Phys. -Chim. Sin. 2007, 23, 1647. [梁云霄, 水淼, 李榕生. 物理化学学报, 2007, 23, 1647.]

    43. [43]

      (43) Chi, M.; Zhao Y. P. Comp. Mater. Sci. 2009, 46, 1085.  

    44. [44]

      (44) Kang, J.; Deng, H. X.; Li, S. S.; Li, J. B. J. Phys.: Condens. Matter 2011, 23, 346001.  

    45. [45]

      (45) Jung, N.; Kim, B.; Crowther, A. C.; Kim, N.; Nuckolls, C.; Brus, L. Acs Nano 2011, 5, 5708.  

    46. [46]

      (46) Lv, Y. A.; Zhuang, G. L.;Wang, J. G.; Jia, Y. B.; Xie, Q. Phys. Chem. Chem. Phys. 2011, 13, 12472.

    47. [47]

      (47) Geng, D. S.; Yang, S. L.; Zhang, Y.; Yang, J. L.; Liu, J.; Li, R. Y.; Sham, T. K.; Sun, X. L.; Ye, S. Y.; Knights, S. Appl. Surf. Sci. 2011, 257, 9193.  

    48. [48]

      (48) Carlsson, J. M.; Hanke, F.; Linic, S.; Scheffler, M. Phys. Rev. Lett. 2009, 102, 166104.  

    49. [49]

      (49) Jack, R.; Sen, D.; Buehler, M. J. J. Comput. Theor. Nanos. 2010, 7, 354.  

    50. [50]

      (50) Palacios, J. J.; Fernandez-Rossier, J.; Brey, L. Phys. Rev. B 2008, 77, 195428.  

    51. [51]

      (51) Liu, X. M.; Romero, H. E.; Gutierrez, H. R.; Adu, K.; Eklund, P. C. Nano Lett. 2008, 8, 2613.  

    52. [52]

      (52) Williams, Q. L.; Liu, X.;Walters,W.; Zhou, J. G.; Edwards, T. Y.; Smith, F. L. Appl. Phys. Lett. 2007, 91, 143116.  

    53. [53]

      (53) Lv, Y. A.; Cui, Y. H.; Xiang, Y. Z.;Wang, J. G.; Li, X. N. Comp. Mater. Sci. 2010, 48, 621.  

    54. [54]

      (54) Lee, D. H.; Lee,W. J.; Kim, S. O. Nano Lett. 2009, 9, 1427.  

    55. [55]

      (55) Late, D. J.; Ghosh, A.; Subrahmanyam, K. S.; Panchakarla, L. S.; Krupanidhi, S. B.; Rao, C. N. R. Solid State Commun. 2010, 150, 734.  

    56. [56]

      (56) Dai, X. Q.; Li, Y. H.; Zhao, J. H.; Tang, Y. N. Acta Phys. -Chim. Sin. 2011, 27, 369. [戴宪起, 李艳慧, 赵建华, 唐亚楠. 物理化学学报, 2011, 27, 369.]

    57. [57]

      (57) Hu, L. B.; Hu, X. R.;Wu, X. B.; Du, C. L.; Dai, Y. C.; Deng, J. B. Phys. B-Condens. Matter 2010, 405, 3337.  

    58. [58]

      (58) Chan, K. T.; Neaton, J. B.; Cohen, M. L. Phys. Rev. B 2008, 77, 235430.  

    59. [59]

      (59) Boukhvalov, D.W.; Katsnelson, M. I. Appl. Phys. Lett. 2009, 95, 023109.  

    60. [60]

      (60) Akturk, O. U.; Tomak, M. Phys. Rev. B 2009, 80, 085417

    61. [61]

      (61) Valencia, H.; Gil, A.; Frapper, G. J. Phys. Chem. C 2010, 114, 14141.  

    62. [62]

      (62) Rodriguez-Manzo, J. A.; Cretu, O.; Banhart, F. Acs Nano 2010, 4, 3422.  

    63. [63]

      (63) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. B 1996, 77, 3865.  

    64. [64]

      (64) Giannozzi, P.; Baroni, S.; Bonini, N.; et al . J. Phys.: Condens. Matter 2009, 21, 395502.  

    65. [65]

      (65) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892.  

    66. [66]

      (66) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.  

    67. [67]

      (67) Huang, B. Phys. Lett. A 2011, 375, 845.  

    68. [68]

      (68) Wang, J. G.; Lv, Y. A.; Li, X. N.; Dong, M. D. J. Phys. Chem. C 2009, 113, 890.  

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    4. [4]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    9. [9]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    10. [10]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    11. [11]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    12. [12]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    13. [13]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    17. [17]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(1844)
  • Abstract views(7111)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return