Citation: ZHAO Ping, XU Lian-Cai, MA Li. Spectral Research into Intramolecular Photoinduced Electron Transfer of Porphyrin-Anthraquinone Hybrids[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2541-2546. doi: 10.3866/PKU.WHXB20111021 shu

Spectral Research into Intramolecular Photoinduced Electron Transfer of Porphyrin-Anthraquinone Hybrids

  • Received Date: 29 July 2011
    Available Online: 19 August 2011

    Fund Project: 广东省医学科研项目(B2010158)资助 (B2010158)

  • A series of covalently linked porphyrin (Por)-anthraquinone (AQ) hybrids Por-Cn-AQ (n=1, 4, 10) with flexible different length carbon chains were synthesized and their intramolecular photoinduced electron transfer (PET) properties were investigated mainly by steady-state fluorescence and decayed luminescence spectra. We studied the PET mechanism using density functional theory (DFT). We found that PET occurs from the porphyrin moiety to the anthraquinone moiety of these dyads and that the PET efficiency is influenced considerably by the length of the linkage between the two moieties in the hybrids. From both the experimental and theoretical results, we can conclude that the PET of these dyads is seemingly most compatible with a“through-bond”(super-exchange) mechanism.
  • 加载中
    1. [1]

      (1) Adriana, A. R. M.;Walderez, G.; Mauro, C. G.; Márcia, A. S. Int. Biodeter. Biodegr. 2011, 65, 423.  

    2. [2]

      (2) Nathan, C.; Kerry, B. B.; Zhou, X. J.; Samuel, J. L.; Keith, C. G.; Timothy,W. J.; Paul, C. D.;Warwick, J. B. Sol. Energy Mater. Sol. Cells 2011, 95, 1767.  

    3. [3]

      (3) Bhattacharya, S.; Nayak, S. K.; Chattopadhyay, S.; Saha, D. J. Mol. Liq. 2008, 143, 125.  

    4. [4]

      (4) Hirakawa, K.; Segawa, H. J. Photochem. Photobiol. A 2010, 213, 73.  

    5. [5]

      (5) Tao, M. L.; Liu, L. Z.; Liu, D. Z.; Zhou, X. Q. Dyes Pigm. 2010, 85, 21.  

    6. [6]

      (6) Odobel, F.; Fortage, J. C. R. Chim. 2009, 12, 437.  

    7. [7]

      (7) Shibano, Y.; Sasaki, M.; Tsuji, H.; Araki, Y.; Ito, O.; Tamao, K. J. Organomet. Chem. 2007, 692, 356.  

    8. [8]

      (8) Durmus, M.; Chen, J. Y.; Zhao, Z. X.; Nyokong, T. Spectrochim. Acta A 2008, 70, 42.  

    9. [9]

      (9) Poon, C. T.; Zhao, S. S.;Wong,W. K.; Kwong, D.W. J. Tetrahedron Lett. 2010, 51, 664.  

    10. [10]

      (10) Zhao, J.W.; Liu, H. M.; Ni,W. B.; Guo, Y.; Yin, X. Acta Phys. -Chim. Sin. 2009, 25, 1472.

    11. [11]

      [赵健伟, 刘洪梅, 倪文彬, 郭彦, 尹星. 物理化学学报, 2009, 25, 1472.]

    12. [12]

      (11) Ren, X. F.; Ren, A. M.;Wang, Q.; Feng, J. K. Acta Phys. -Chim. Sin. 2010, 26, 110.

    13. [13]

      [任雪峰, 任爱民, 王钦, 封继康. 物理化学学报, 2010, 26, 110.]

    14. [14]

      (12) Liu, J.; Huang, J.W.; Shen, H.;Wang, H.; Yu, H. C.; Ji, L. N. Dyes Pigm. 2008, 77, 374.  

    15. [15]

      (13) Miao, D.; Xu, Y. Z.; Yang, J.; Xu, Z. H. Spectrochim. Acta A 2004, 24, 513.

    16. [16]

      [苗笛, 徐怡庄, 杨军, 许振华. 光谱学与光谱分析, 2004, 24, 513.]

    17. [17]

      (14) Perun, S.; Tatchen, J.; Marian, C. M. Chem. Phys. Chem. 2008, 9, 282.

    18. [18]

      (15) Li, C.; Zhang, L.; Zhang, C.; Hirao, H.;Wu,W.; Shaik, S. Angew. Chem. Int. Edit. 2007, 46, 8168.  

    19. [19]

      (16) Zhang, X.; Muranaka, A.; Lu,W.; Zhang, Y.; Bian, Y.; Jiang, J.; Kobayashi, N. Chem. Eur. J. 2008, 14, 4667.  

    20. [20]

      (17) Zhang, Y. H.; Ruan,W. J.;Wu, Y. Acta Phys. -Chim. Sin. 2005, 21, 1390.

    21. [21]

      [章应辉, 阮文娟, 吴扬. 物理化学学报, 2005, 21, 1390.]

    22. [22]

      (18) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  

    23. [23]

      (19) Rassolov, V. A.; Pople, J. A.; Ratner, M. A.;Windus, T. L. J. Chem. Phys. 1998, 109, 1223.  

    24. [24]

      (20) Zhurko, G. A.; Zhurko, D. A. Chemcraft, Version 1.6; Plimus, Inc.: Milpitas, USA, 2011.

    25. [25]

      (21) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al . Gaussian 03, Revision D.01; Gaussian Inc.:Wallingford, CT, 2004.

    26. [26]

      (22) Huang, J.W.; Ji, L. N. Chem. J. Chin. Univ. 1995, 16, 163.

    27. [27]

      [黄锦汪, 计亮年. 高等学校化学学报, 1995, 16, 163.]

    28. [28]

      (23) Maza,W. A.; Larsen, R.W. Biophys. J. 2010, 98, 565.

    29. [29]

      (24) Hutchison, J. A.; Bell, T. D. M.; Ganguly, T.; Ghiggino, K. P.; Langford, S. J.; Lokan, N. R.; Paddon-Row, M. N. J. Photochem. Photobiol. A 2008, 197, 220.  

    30. [30]

      (25) Karr, P. A.; Zandler, M. E.; Beck, M.; Jaeger, J. D.; McCarty, A. L.; Smith, P. M.; D'Souza, F. J. Mol. Struct. 2006, 765, 91.

    31. [31]

      (26) Le, X. Y.; Ji, L. N.;Wu, F. H.; Song, F. Y. Chin. Sci. Bull. 1997, 42, 1103.

    32. [32]

      [乐学义, 计亮年, 毋福海, 宋粉云. 科学通报. 1997, 42, 1103.]

    33. [33]

      (27) Le, X. Y.; Ji, L. N. Chin. Sci. Bull. 2001, 46, 1235.

    34. [34]

      [乐学义, 计亮年. 科学通报, 2001, 46, 1235.]

    35. [35]

      (28) Ren, Q. Z.; Huang, J.W.; Lin, C. Y.; Ji, L. N. Chem. J. Chin. Univ. 1999, 20, 333.

    36. [36]

      [任奇志, 黄锦汪, 林翠梧, 计亮年. 高等学校化学学报, 1999, 20, 333.]

    37. [37]

      (29) Kuznetaov, A. M.; Ulstrup, J. J. Chem. Phys. 1981, 75, 2074.

    38. [38]

      (30) Warman, J. M. Nature 1986, 320, 615.  

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    6. [6]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    12. [12]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    13. [13]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    14. [14]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    15. [15]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    16. [16]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

    17. [17]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    18. [18]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    19. [19]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(1287)
  • Abstract views(3250)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return