Citation:
SUN Tao, WANG Yi-Bo. Calculation of the Binding Energies of Different Types of Hydrogen Bonds Using GGA Density Functional and Its Long-Range, Empirical Dispersion Correction Methods[J]. Acta Physico-Chimica Sinica,
;2011, 27(11): 2553-2558.
doi:
10.3866/PKU.WHXB20111017
-
We investigated eleven exchange-correlation energy density functionals including generalized gradient approximation (GGA) (PBE, PW91), meta-GGA (M06-L), hyper-GGA (M06-2X, B3LYP, X3LYP), LC-DFT methods (CAM-B3LYP, LC-ωPBE, ωB97X), and density functional theory with dispersion corrections (DFT-D) methods (ωB97X-D, B97-D) for their performance in describing systems with conventional and non-conventional hydrogen bonds. After comparing the results using the benchmark CCSD(T)/aug-cc-pVQZ approach we found that the M06-2X and ωB97X-D functionals provided the most accurate and reliable results for the fifteen systems studied in this work with strong, moderate, and weak hydrogen bonds. It is important to employ an appropriate basis set to predict the binding energy of hydrogen bonds for all DFT methods and we found that the basis set of 6-311++G(2d, 2p) or aug-cc-pVDZ is adequate. The effect of the basis set superposition error (BSSE) is relatively small for the DFT methods tested. All the methods except for ωB97X and ωB97X-D were found to produce equally accurate or even more accurate results without BSSE correction.
-
-
-
[1]
(1) Pople, J. A.; Head- rdon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968.
-
[2]
(2) Head- rdon, M.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett. 1988, 153, 503.
-
[3]
(3) Krishnan, R.; Pople, J. A. Int. J. Quantum Chem. 1978, 14, 91.
-
[4]
(4) Sinnokrot, M. O.; Sherrill, C. D. J. Phys. Chem. A 2006, 110, 10656.
-
[5]
(5) Parr, R. G.; Yang,W. Density-Functional Theory of Atoms and Molecules. Oxford University Press: New York, 1989.
-
[6]
(6) Tuma, C.; Boese, A. D.; Handy, N. C. Phys. Chem. Chem. Phys. 1999, 1, 3939.
-
[7]
(7) Rabuck, A. D.; Scuseria, G. E. Theor. Chem. Acc. 2000, 104, 439.
-
[8]
(8) Sherer, E. C.; York, D. M.; Cramer, C. J. J. Comput. Chem. 2003, 24, 57.
-
[9]
(9) Xu, X.; ddard III,W. A. J. Phys. Chem. A 2004, 108, 2305.
- [10]
-
[11]
(11) Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2005, 1, 415.
-
[12]
(12) Xu, X.; ddard,W. A., III. Proc. Natl. Acad. Sci. U. S. A, 2004, 101, 2673.
-
[13]
(13) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101.
-
[14]
(14) Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Theor. Chem. Account. 2008, 120, 215.
-
[15]
(15) Yanai, T.; Tew, D.; Handy, N. Chem. Phys. Lett. 2004, 393, 51.
-
[16]
(16) Vydrov, O. A.; Scuseria, G. E. J. Chem. Phys. 2006, 125, 234109.
-
[17]
(17) Chai, J. D.; Head- rdon, M. J. Chem. Phys. 2008, 128, 084106.
- [18]
-
[19]
(19) Chai, J. D.; Head- rdon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615.
-
[20]
(20) Hohenstein, E. G.; Chill, S. T.; Sherrill, C.D. J. Chem. Theory Comput. 2008, 4, 1996.
-
[21]
(21) Plumley, J. A.; Dannenberg, J. J. J. Comput. Chem. 2011, 32, 1519.
-
[22]
(22) Wang, Y. B.; Lin, Z. Y. J. Am. Chem. Soc. 2003, 125, 6072.
-
[23]
(23) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, 1960.
-
[24]
(24) Takahashi, O.; Kohno, Y.; Nishio, M. Chem. Rev. 2010, 110, 6049.
-
[25]
(25) Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: Oxford, 1999.
-
[26]
(26) Atwood, J. L.; Steed, J.W. Encyclopedia of Supramolecular Chemistry; Marcel Dekker Inc.: NewYork, 2004; pp 1576-1585.
-
[27]
(27) Mai, S.W.; Zhou, G. D.; Li,W. J. Advanced Inorganic Structural Chemistry; Peking University Press: Beijing, 2001; pp 330-343.
-
[28]
[麦松威, 周公度, 李伟基. 高等无机结构化学. 北京: 北京大学出版社. 2001; 330-343.]
-
[29]
(28) Jurecka, P.; Sponer, J.; Cerny, J.; Hobza, P. Phys. Chem. Chem. Phys. 2006, 8, 1985.
-
[30]
(29) Perdew, J. P.; Schmidt, K. Density Functional Theory and Its Applications to Materials; American Institute of Physics: New York, 2001; pp 1-20.
-
[31]
(30) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
-
[32]
(31) Perdew, J. P. Electronic Structure of Solids ? 91; Akademie Verlag: Berlin, 1991; pp 11-20.
-
[33]
(32) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. 2006, 110, 5121.
- [34]
- [35]
-
[36]
(35) Johnson, E. R.;Wolkow, R. A.; DiLabio, G. A. Chem. Phys. Lett. 2004, 394, 334.
-
[37]
(36) Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.
-
[38]
(37) McLean, A.D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639.
- [39]
-
[40]
(39) Woon, D. E.; Dunning, Jr. T. H. J. Chem. Phys. 1993, 98, 1358.
-
[41]
(40) Kendall, R. A.; Dunning, Jr. T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.
- [42]
-
[43]
(42) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian Inc.:Wallingford CT, 2009.
-
[44]
(43) Werner, H. J.; Knowles, P. J.; Lindh, R.; et al. MOLPRO, version2009.1, University College Cardiff Consultants Ltd.: Cardiff, Wales, 2009.
- [45]
-
[46]
(45) Hill, J. G.; Platts, J. A. J. Chem. Theory Comput. 2007, 3, 80.
-
[47]
(46) Distasio, R. A.; Head- rdon, M. Mol. Phys. 2007, 105, 1073.
-
[48]
(47) Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 289.
-
[49]
(48) Arey, J. S.; Aeberhard, P. C.; Lin, I. C.; Rothlisberger, U. J. Phys. Chem. B 2009, 113, 4726.
-
[50]
(49) Rothenberg, S.; Schaefer Ⅲ, H. F. J. Chem. Phys. 1971, 54, 2764.
-
[51]
(50) Li, X. F. An Investigation of the BSSE Corrections at the DFT Level. Master Dissertation, Guizhou University, Guiyang, 2007.
-
[52]
[李雪芳. DFT水平下BSSE校正问题的研究
-
[53]
[D]. 硕士学位论文, 贵阳: 贵州大学, 2007.]
-
[54]
(51) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2005, 109, 5656.
-
[55]
(52) Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 364.
-
[1]
-
-
-
[1]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[2]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[3]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[4]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[5]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[6]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[7]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[8]
Yinglian LI , Chengcheng ZHANG , Xinyu ZHANG , Xinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087
-
[9]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[10]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[11]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[12]
Xintian Xie , Sicong Ma , Yefei Li , Cheng Shang , Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164
-
[13]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[14]
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
-
[15]
Na Li , Limin Shao . Deduction of the General Formula of the Inverse Function of the Titration Curve. University Chemistry, 2025, 40(3): 390-401. doi: 10.12461/PKU.DXHX202409134
-
[16]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[17]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[18]
Zhiwen HUANG , Qi LIU , Jianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184
-
[19]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[20]
Jia Yao , Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117
-
[1]
Metrics
- PDF Downloads(1738)
- Abstract views(4324)
- HTML views(35)