Citation: ZHANG Fu-Chun, ZHANG Wei-Hu, DONG Jun-Tang, ZHANG Zhi-Yong. Electronic Structure and Magnetism of Ni-Doped ZnO Nanowires[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2326-2332. doi: 10.3866/PKU.WHXB20111016
-
Based on spin-polarized density functional theory we studied the electronic structures, magnetic and optical properties of Ni-doped ZnO nanowires. The magnetic results show that three magnetic coupling states are present: ferromagnetic (FM), antiferromagnetic (AFM), and paramagnetic (PM) states for the six kinds of Ni-doped configurations. The calculated energy results indicate that antiferromagnetic coupling is more stable when Ni atoms substitute for Zn atoms in the ZnO nanowires on the outside surface along the [0001] direction. AFM coupling has a metallic nature. The FM results from the density of states show that the spin polarization phenomenon appears near the Fermi level and causes strong hybridization between Ni 3d and O 2p. Moreover, the magnetic moments mainly originate from the unpaired electrons of the Ni 3d orbitals and the electrons of the O 2p orbitals contribute a little to the magnetic moments. The coupling of FM has a half-metal nature. In addition, the optical properties indicate that the absorption peaks show a significant red shift and od emission in the far UV band while a blue shift is apparent for the near UV band (380 nm). These results indicate that the Ni-doped ZnO nanowires are promising magneto-optical electronic materials and they can be used for nanoscale spintronics device materials.
-
Keywords:
-
ZnO
, - Nanowire,
- First-principles,
- Doping,
- Magnetic property
-
-
-
[1]
(1) Ohno, H. Science 1998, 291, 951.
-
[2]
(2) Pan, Z.W.; Dai, Z, R.; Wang, Z. L. Science 2001, 281, 1947.
-
[3]
(3) Jian,W. B.; Wu, Z. Y.; Huang, R. T.; Chiang, S. J.; Lan, M. D.; Lin, J. J. Phys. Rev. B 2006, 73, 233308.
-
[4]
(4) Sluiter, M. H. F.; Kawazoe, Y.; Sharma, P.; Inoue, A.; Raju,A.R.; Rout, C.; Waghmare, U. V. Phys. Rev. Lett. 2005, 94, 187204.
-
[5]
(5) Kulkarni, J. S.; Kazakova, O.; Holmes, J. D. Appl. Phys. A:Mater. Sci. Pro. 2006, 85, 277.
-
[6]
(6) Chang, Y. Q.; Wang, D. B.; Luo, X. H.; Xu, X. Y.; Chen, X. H.; Li, L.; Chen, C. P.; Wang, R. M.; Xu, J.; Yu, D. P. Appl. Phys. Lett. 2003, 83, 4020.
-
[7]
(7) Chou, S. Y.; Krauss, P. R.; Zhang,W. J. Vac. Sci. Technol. B1997, 15, 2897.
-
[8]
(8) Jun, Y.; Jung, Y.; Cheon, J. J. Am. Chem. Soc. 2002, 124, 615.
-
[9]
(9) Li, Y. F.; Zhou, Z.; Chen, Y. S.; Chen, Z. F. J. Chem. Phys. 2009, 130, 204706.
-
[10]
(10) Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D.Science 2000, 287, 1019.
-
[11]
(11) Sluiter, M. H. F.; Kawazoe, Y.; Sharma, P.; Inoue, A.; Raju, A.R.; Rout, C.; Waghmare, U. V. Phys. Rev. Lett. 2005, 94,187204.
-
[12]
(12) Zhou, Z.; Li, Y. F.; Liu, L.; Chen, Y. S.; Zhang, S. B.; Chen, Z.F. J. Phys. Chem. C 2008, 112, 13926.
-
[13]
(13) Li, Y. F.; Zhou, Z.; Jin, P.; Chen, Y. S.; Zhang, S. B.; Chen, Z. F.J. Phys. Chem. C 2010, 114, 12099.
-
[14]
(14) Liu, X. X.; Lin, F. T.; Sun, L. L.; Cheng,W. J.; Ma, X. M.; Shi,W. Z. Appl. Phys. Lett. 2006, 88, 062508.
-
[15]
(15) Cui, J. B.; Gibson, U. J. Appl. Phys. Lett. 2005, 87, 133108.
-
[16]
(16) He, J. H.; Lao, C. S.; Chen, L. J.; Davidovic, D.; Wang, Z. L.J. Am. Chem. Soc. 2005, 127, 16376.
-
[17]
(17) Wakano, T.; Fujimura, N.; Morinaga, Y.; Abe, N.; Ito, T. Physica E 2001, 10, 260.
-
[18]
(18) Al-Harbi, T. Journal of Alloys and Compounds 2011, 509, 387.
-
[19]
(19) Cheng, C.W.; Xu, G. Y.; Zhang, H. Q.; Luo, Y. Mater. Lett.2008, 62, 1617.
-
[20]
(20) Yin, Z.; Chen, N.; Yang, F.; Song, S.; Chai, C.; Zhong, J.; Qian,H.; Ibrahim, K. Solid State Commun. 2005, 135, 430.
-
[21]
(21) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert,M. I. J.; Refson, K.; Payne, M. C. Zeitschrift fuer Kristallographie 2005, 220, 567.
- [22]
-
[23]
(23) Sapra, A.; Sarma, D. D. Phys. Rev. B 2004, 69, 25304.
-
[24]
(24) Ermoshin, V. A.; Veryazov, V. A. Phys. Stat. Sol. 1995, B189,K49.
- [25]
-
[26]
(26) Wander, A.; Harrison, N. M. Surf. Sci. Lett. 2000, 23, L342.
-
[27]
(27) Zhang, Z. H.; Qi, X. Y.; Jian, J. K.; Duan, X. F. Micron 2006, 37, 229.
-
[28]
(28) Kong, Y. C.; Yu, D. P.; Zhang, B.; Fang,W.; Feng, S. Q. Appl. Phys. Lett. 2001, 78, 407.
-
[29]
(29) Chen, T.; Xing, G. Z.; Zhang, Z.; Chen, H. Y.; Wu, T.Nanotechnology 2008, 19, 435711.
-
[30]
(30) Twardowski, A.; Dietl, T.; Demianiuk, M. Solid State Commun.1983, 48, 845.
-
[31]
(31) Kolodziejski, L. A.; Gunshor, R. L.; Venkatasubramanian, R.; Bonsett, T. C.; Frohne, R.; Datta, S.; Bylsma, R. B.; Becker,W.M.; Nurmikko, A. V. J. Vac. Sci. Technol. B 1986, 4, 583.
-
[32]
(32) Lee, Y. R.; Ramdas, A. K.; Aggarwal, R. L. Phys. Rev. B 1988, 38, 10600.
-
[1]
-
-
[1]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[2]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[3]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[4]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[5]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[6]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[7]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[8]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[9]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[10]
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
-
[11]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[12]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[13]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[14]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[15]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[16]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[17]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[18]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[19]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[20]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[1]
Metrics
- PDF Downloads(1578)
- Abstract views(3100)
- HTML views(6)