Citation: XU Li, QIAO Jin-Li, DING Lei, HU Long-Yu, LIU Ling-Ling, WANG Hai-Jiang. Electrocatalytic Activity of CoPy/C Catalyst for the Oxygen Reduction Reaction in Alkaline Electrolyte[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2251-2254. doi: 10.3866/PKU.WHXB20111015 shu

Electrocatalytic Activity of CoPy/C Catalyst for the Oxygen Reduction Reaction in Alkaline Electrolyte

  • Received Date: 11 July 2011
    Available Online: 18 August 2011

    Fund Project: 国家自然科学基金(21173039) (21173039) 上海市浦江人才基金(08PJ14096) (08PJ14096) 上海市自然科学基金(09ZR1433300) (09ZR1433300) 浙江省重中之重学科开放基金(20110927) (20110927) 教育部归国留学人员基金(2009(1001)) (2009(1001))上海市重点学科项目(B604)资助 (B604)

  • In this communication, we report a novel CoPy/C catalyst for the oxygen reduction reaction (ORR) in alkaline electrolyte using cobalt sulfate heptahydrate (CoSO4·7H2O) and pyridine (Py) as the Co and N precursors supported on Vulcan XC-72R, followed by heat treatment in an inert atmosphere. Electrochemical performances were evaluated using cyclic voltammograms (CVs) and rotating disk electrode (RDE) technique in terms of its ORR activity as a function of Co content in the catalyst synthesis. Results show that the presence of Co in the CoPy/C catalyst greatly affects the formation of ORR catalytic active sites and that the best performing catalyst is 10%Co%30Py/C, which was synthesized at 800°C. In 3.0 mol·L-1 KOH, 10%Co30%Py/C (in O2) produces an obvious ORR current with an on-set potential at 0.014 V. Compared with the 40% Py/C the on-set potential of the 10% Co30% Py/C for oxygen reduction shifted positively by 71 mV (versus RHE (reversible hydrogen electrode)) and a well-defined limiting current plateau was achieved. Therefore, a maximum current density of 1.0 mA·cm-2 was obtained at -0.16 V with a half-wave potential of -0.07 V. Transmission electron microscopy (TEM) measurements show that the nanoparticles with a diameter of 20 nm are uniformly dispersed on Vulcan carbon (Vulcan XC-72R).
  • 加载中
    1. [1]

      (1) Jasinski, R. Nature 1964, 201, 1212.   

    2. [2]

      (2) Jahnke, H.; Schö nbron, M.; Zimmermann, G. Top. Curr. Chem. 1976, 61, 133.   

    3. [3]

      (3) Ba tzky, V. S.; Tarasevich, M. R.; Radyushkina, K. A.; Levina,O. A.; Andrusyova, S. I. J. Power Sources 1977, 2, 233.   

    4. [4]

      (4) Maldonado, S.; Stevenson, K. J. J. Phys. Chem. B 2004, 108,11375.   

    5. [5]

      (5) Bogdanoff, P.; Herrmann, I.; Hilgendorff, M.; Dorbandt, I.; Fiechter, S.; Tributsch, H. J. New Mater. Electrochem. Syst. 2004, 7, 85.

    6. [6]

      (6) Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Science 2009, 324, 71.   

    7. [7]

      (7) Lalander, G.; Cote, R.; Guay, D.; Dodelet, J. P.; Weng, L.T.; Bertrand, P. Electrochim. Acta 1997, 42, 1379.   

    8. [8]

      (8) Cote, R.; Lalande, G.; Guay, D.; Dodelet, J. P. J. Electrochem. Soc. 1998, 145, 2411.

    9. [9]

      (9) Schulenburg, H.; Stankov, S.; Schunemann, V.; Radnik, J.; Dorbandt, I.; Fiechter, S.; Bogdanoff, P.; Tributsch, H. J. Phys. Chem. B 2003, 107, 9034.

    10. [10]

      (10) Ye, S. Y.; Vijh, A. K. Electrochem. Commun. 2003, 5, 272.   

    11. [11]

      (11) Yuasa, M.; Yamaguchi, A.; Itsuki, H.; Tanaka, K.; Yamamoto,M.; Oyaizu, K. Chem. Mater. 2005, 17, 4278.   

    12. [12]

      (12) Bashyam, R.; Zelenay, P. Nature 2006, 443, 63.   

    13. [13]

      (13) Marcotte, S.; Villers, D.; Guillet, N.; Roué, L.; Dodelet, J. P.Electrochim. Acta 2004, 50, 179.   

    14. [14]

      (14) Zang, H. J.; Yuan, X. X.; Wen,W.; Zhang, D. Y.; Sun, L.; Jiang,Q. Z.; Ma, Z. F. Electrochem. Commun. 2009, 11, 206.   

    15. [15]

      (15) Wang, P.; Ma, Z. Y.; Zhao, Z. C.; Jia, L. X. J. Electroanal. Chem. 2007, 611, 87.   

    16. [16]

      (16) Yeager, E. Electrochim. Acta 1984, 29, 1527.   

    17. [17]

      (17) Sirk, A. H. C.; Campbell, S. A.; Birss, V. I. Electrochem. Solid- State Letters 2005, 8, A104.

    18. [18]

      (18) Li, X. G.; Liu, G.; Popov, B. N. J. Power Sources 2010, 195,6373.   

    19. [19]

      (19) Nallathambi, V.; Lee, J.W.; Kumaraguru, S. P.; Wu, G., Popov,B. N. J. Power Sources 2008, 183, 34.   

    20. [20]

      (20) Gasteiger, H. A.; Markovic, N. M. Science 2009, 324, 48.   

    21. [21]

      (21) Lai, Y.; Zhou, D. B.; Hu, J.W.; Cui, L. L. Acta Chim. Sin. 2008, 66, 1015.

    22. [22]

      [赖渊, 周德璧, 胡剑文, 崔莉莉. 化学学报2008, 66, 1015.]

    23. [23]

      (22) Wiesener, K. Electrochim. Acta 1986, 31, 1073.   

    24. [24]

      (23) Liu, G.; Li, X. G.; Ganesan, P.; Popov, B. N.; Ganesan, P.Electrochim. Acta 2010, 55, 2853.   

    25. [25]

      (24) Liu, G.; Li, X. G.; Ganesan, P.; Popov, B. N.; Ganesan, P. Appl. Catal. B: Environ. 2009, 93, 156.

    26. [26]

      (25) Yuan, X. X.; Zeng, X.; Zhang, H. J.; Ma, Z. F.; Wang, C. Y.J. Am. Chem. Soc. 2010, 132, 1754.   

    27. [27]

      (26) Wang, M.; Zhang, H.; Zhong, H.; Ma, Y. Int. J. Hydrog. Energy2011, 36, 720.   

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    5. [5]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    6. [6]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    7. [7]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    8. [8]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    9. [9]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    10. [10]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    11. [11]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    12. [12]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    16. [16]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    17. [17]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    20. [20]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

Metrics
  • PDF Downloads(1346)
  • Abstract views(2913)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return