Citation: YU Hong-Bo, PU Zhi-Ying, WANG Yue-Juan, LU Ji-Qing, TENG Bo-Tao, LUO Meng-Fei. Preparation and Application of a Cr2O3-α-AlF3 Catalyst with a High Specific Surface Area[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2677-2681. doi: 10.3866/PKU.WHXB20111014 shu

Preparation and Application of a Cr2O3-α-AlF3 Catalyst with a High Specific Surface Area

  • Received Date: 28 June 2011
    Available Online: 18 August 2011

    Fund Project: 浙江省自然科学基金(Y4100001) (Y4100001)浙江省科技计划(2009F70004, 2009R50020-6)资助项目 (2009F70004, 2009R50020-6)

  • A high specific surface area Cr2O3-α-AlF3 catalyst was prepared using a carbon hard template method. The synthesis procedure consisted of three consecutive steps: (1) the impregnation of a sucrose (C12H22O11) aqueous solution with Cr2O3-γ-Al2O3 and subsequent thermal treatment; (2) the thermal treatment of the obtained solid with HF, C@Cr2O3-γ-Al2O3 can be completely transformed into C@Cr2O3-γ-AlF3 at 400°C with hydrogen fluoride; (3) the removal of the carbon template in C@Cr2O3-γ- AlF3 upon high temperature combustion giving the high surface area Cr2O3-γ-AlF3 (115 m2·g-1). The catalysts were characterized by X-ray diffraction (XRD), N2 physisorption, ammonia temperatureprogrammed desorption (NH3-TPD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersion X-ray (EDX) techniques. We found that the fluorination process was crucial for the resulting Cr2O3-α-AlF3 with a high specific surface area of 115 m2·g-1 under optimal conditions. The Cr2O3-α-AlF3 catalyst with a high specific surface area was more active for the decomposition of 1,1-difluoroethane than the catalyst prepared by the direct fluorination of Cr2O3-γ-Al2O3, because it contained a higher amount of acid sites.
  • 加载中
    1. [1]

      (1) Lu, J.; Yang, H. E.; Chen, S. K.; Shi, L.; Ren, J. G.; Li, H. L.; Peng, S. K. Catal. Lett. 1996, 41, 221.   

    2. [2]

      (2) Kemnitz, E.; Kohne, A.; Grohmann, I.; Lippitz, A.; Unger,W. E.S. J. Catal. 1996, 159, 270.   

    3. [3]

      (3) Jang, H. J.; Kim, D. H.; Kim, C. H.; Cho, Y. G.; Lee, J. E.; Iikubo, Y. Catalyst for Preparation of Pentafluoroethane andPreparation Method Thereof. US Pat. Appl. 7232789, 2007.

    4. [4]

      (4) Tung, H. S.; Smith, A. M.; Swain, C. F. Single Stage Process forProducing Hydrofluorocarbons from Perchloroethylene. US Pat.5545778, 1996.

    5. [5]

      (5) Kim, H.; Kim, H. S.; Lee, B. G.; Kwon, Y. S.; Park, K.Y. J. Ind. Eng. Chem. 1997, 3, 203.

    6. [6]

      (6) Tachuikow-Roux, E.; Quiring,W. J.; Simmie, J. M. J. Phys. Chem. 1970, 74, 2449.

    7. [7]

      (7) Lee, H.; Kim, H. S.; Kim, H.; Jeong,W. S.; Seo, I. J. Mol. Catal. A: Chem. 1998, 136, 85.

    8. [8]

      (8) Lu, J.; Shi, L.; Yang, H. E.; Chen, S. K.; Ren, J. G.; Li, H. L.; Peng, S. Y. Chin. J. Catal. 1996, 17, 459.

    9. [9]

      (9) Cuzzato, P.; Veneto, P. Catalyst for the Fluorination ofHalogenated Organic Compounds. US Pat. 6300530, 2001.

    10. [10]

      (10) Lu, J.; Quan, H. D.; Li, H. F.; Yang, H. E.; Wang, Z. Y.; Li, Z.; Shi, L.; Qu, H. X.; Zhao, Z. X.; Li, J.; Hao, Z. Z.; Li, H. L.Catalyst for Fluoreation of Halogenated Hydrocarbon. CNPatent 11 452 75.1, 1997-03-19.

    11. [11]

      [吕剑, 权恒道, 李惠芳, 杨会娥, 王振宇, 李忠, 石磊, 屈宏翔, 赵智霞, 李杰, 郝仲璋, 李惠黎. 氟化卤代烃的氟化催化剂: 中国, CN11 452 75.1

    12. [12]

      [P]. 1997-03-19.]

    13. [13]

      (11) Daniel, P.; Bulou, A.; Rousseau, M.; Nouet, J.; Fourquet, J. L.; Leblanc, M.; Burriel, R. J. Phys.: Condens. Matter 1990, 2,5663.   

    14. [14]

      (12) Fourquet, J. L.; Rivie`re, M.; Bail, A. L.; Nygrens, M.; Grins, J.Eur. J. Solid State Inorg. Chem. 1988, 25, 535.

    15. [15]

      (13) Bail, A. L.; Jacoboni, C.; Leblanc, M.; De Pape, R.; Duroy, H.; Fourquet, J. L. J. Solid State Chem. 1988, 77, 96.   

    16. [16]

      (14) Herron, N.; Thorn, D. L.; Harlow, R. L.; Jones, G. A.; Parise, J.B.; Fernandez-Baca, J. A.; Vogt, T. Chem. Mater. 1995, 7, 75.   

    17. [17]

      (15) Bail, A. L.; Fourquet, J. L.; Bentrup, U. J. Solid State Chem.1992, 100, 151.   

    18. [18]

      (16) Ravez, J.; Mogus-Milankovic, A.; Chaminade, J. P.; Hagenmuller, P. Mater. Res. Bull. 1984, 19, 1311.   

    19. [19]

      (17) Kemnitz, E.; Gross, U.; Rüdiger, S.; Shekar, S. C. Angew. Chem. Int. Edit. 2003, 42, 4251.   

    20. [20]

      (18) Ruediger, S. K.; Gross, U.; Feist, M.; Prescott, H. A.; Shekar, S.C.; Troyanov, S. I.; Kemnitz, E. J. Mater. Chem. 2005, 15, 588.   

    21. [21]

      (19) Adamczyk, B.; Boese, O.; Weiher, N.; Schroeder, S. L. M.; Kemnitz, E. J. Fluorine. Chem. 2000, 101, 239.   

    22. [22]

      (20) Yim, S. D.; Nam, I. S. J. Catal. 2004, 221, 601.   

    23. [23]

      (21) Dambournet, D.; Eltanamy, G.; Vimont, A.; Lavalley, J. C.; upil, J. M.; Demourgues, A.; Durand, E.; Majimel, J.; Rudiger, S.; Kemnitz, E.; Winfield, J. M.; Tressaud, A. Chem. Eur. J. 2008, 14, 6205.   

    24. [24]

      (22) Alonso, C.; Morato, A.; Medina, F.; Guirado, F.; Cesteros, Y.; Salagre, P.; Sueiras, J. E. Chem. Mater. 2000, 12, 1148.   

    25. [25]

      (23) Alonso, C.; Morato, A.; Medina, F.; Cesteros, Y.; Salagre, P.; Sueiras, J. E. Appl. Catal. B: Environ. 2003, 40, 259.   

    26. [26]

      (24) Scholz, G.; Koenig, R.; Petersen, J.; Angelow, B.; Dorfel, I.; Kemnitz, E. Chem. Mater. 2008, 20, 5406.   

    27. [27]

      (25) Li, G. L.; Nishiguchi, H.; Ishihara, T.; Moro-oka, Y.; Takita, Y.Appl. Catal. B: Environ. 1998, 16, 309.   

  • 加载中
    1. [1]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    2. [2]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    3. [3]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    10. [10]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    11. [11]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    12. [12]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    13. [13]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    14. [14]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    15. [15]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    16. [16]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    17. [17]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    18. [18]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    19. [19]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    20. [20]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

Metrics
  • PDF Downloads(852)
  • Abstract views(2410)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return