Citation: LIU Xiao-Ting, GUO Jing-Fu, AN Di, WANG Dan, REN Ai-Min, FENG Ji-Kang. Theoretical Study on the Two-Photon Absorption Properties of Pyrazole Aluminum Compounds[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2303-2310. doi: 10.3866/PKU.WHXB20111013 shu

Theoretical Study on the Two-Photon Absorption Properties of Pyrazole Aluminum Compounds

  • Received Date: 5 May 2011
    Available Online: 18 August 2011

    Fund Project: 国家自然科学基金(20673045, 20973078) (20673045, 20973078) 留学回国人员启动基金(外交司留(2008)890 号) (外交司留(2008)890 号)国家重点基础研究发展计划项目(973)(2002CBN613406)资助 (973)(2002CBN613406)

  • An extensive series of pyrazole aluminum compounds containing an Al2N4 center as a pseudoconjugated system were theoretically investigated for their one-photon absorption and two-photon absorption (OPA and TPA) properties by density functional theory (DFT) and Zerner's intermediate neglect of differential overlap (ZINDO) methods. The results indicate that pyrazole aluminum compounds are od TPA materials and that the TPA maximal absorption cross-section (δmax) can reach 2860.1 GM (1 GM=10-50 cm4·s·photon-1). By incorporating electron-acceptors in the central core, a π-conjugated bridge and terminal groups, the OPA and TPA properties can be modulated. This research provides strategies for the enhancement of molecular TPA in the target region. The origin of the large δmax of some of the studied molecules was determined using a three-level energy model. We conclude that an increase in the intramolecular charge transfer can enhance δmax. Moreover, the pyrazole aluminum compounds behave in a similar manner to pyrazabole chromophores in terms of linear optical, and TPA properties and they possess an increased δmax to some extent.
  • 加载中
    1. [1]

      (1) Kawata, S.; Kawata, Y. Chem. Rev. 2000, 100, 1777.   

    2. [2]

      (2) Zipfel,W. R.; Williams, R. M.; Webb,W.W. Nat. Biotechnol.2003, 21, 1369.   

    3. [3]

      (3) Bouit, P. A.; Wetzel, G.; Berginc, G.; Loiseaux, B.; Toupet, L.; Feneyrou, P.; Bretonnière, Y.; Kamada, K.; Maury, O.; Andraud,C. Chem. Mater. 2007, 19, 5325.   

    4. [4]

      (4) Lin, T. C.; Chung, S. J.; Kim, K. S.; Wang, X.; He, G. S.; Swiatkiewicz, J.; Pudavar, H. E.; Prasad, P. N. Adv. Polym. Sci.2003, 161, 157.   

    5. [5]

      (5) Belfield, K. D.; Corredor, C. C.; Morales, A. R.; Dessources, M.A.; Hernandez, F. E. J. Fluoresc. 2006, 16, 105.   

    6. [6]

      (6) Opanasyuk, O.; Ryderfors, L.; Mukhtar, E.; Johansson, L. B. Å .Phys. Chem. Chem. Phys. 2009, 11, 7152.

    7. [7]

      (7) Hales, J. M.; Matichak, J.; Barlow, S.; Ohira, S.; Yesudas, K.; Brédas, J. L.; Perry, J.W.; Marder, S. R. Science 2010, 327, 1485.   

    8. [8]

      (8) Jiang, Z.W.; Yuan, D. J.; Zhu, A. D.; Xia, A. D.; Huang,W. H.; Chu, J. R.; Liu, Y. P. Optics and Precision Engineering 2003, 11,234.

    9. [9]

      [蒋中伟, 袁大军, 祝安定, 夏安东, 黄文浩, 褚家如, 刘允萍. 光学精密工程, 2003, 11, 234.]

    10. [10]

      (9) Hurley, T. J.; Robinson, M. A.; Scruggs, J. A.; Trotz, S. I. Inorg. Chem. 1967, 6, 1310.   

    11. [11]

      (10) Liao, B.; Li, Y.; Lu, J. Mater. Chem. 1993, 3, 117.   

    12. [12]

      (11) Carmalt, C. J.; Mileham, J. D.; White, A. J. P.; Williams, D. J.Organometallics 2003, 22, 1554.   

    13. [13]

      (12) Hayek, A.; Nicoud, J. F.; Bolze, F.; Bour gne, C.; Baldeck, P. L.Angew. Chem. Int. Ed. 2006, 45, 6466.   

    14. [14]

      (13) Hayek, A.; Bolze, F.; Bour gne, C.; Baldeck, P. L.; Didier, P.; Arntz, Y.; Mély, Y.; Nicoud, J.-F. Inorg. Chem. 2009, 48, 9112,

    15. [15]

      (14) Liu, X. T.; Zou, L. Y.; Ren, A. M.; Guo, J. F.; Sun, Y.; Huang, S.; Feng, J. K. Theor. Chem. Acc. 2011: DOI: 10.1007/s00214-011-0956-2.

    16. [16]

      (15) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09.Revision B.01.Wallingford, CT: Gaussian Inc., 2010.

    17. [17]

      (16) Cha, M.; Torruellas,W. E.; Stegeman, G. I.; Horsthuis,W. H. G.; Mö hlmann, G. R.; Meth, J. Appl. Phys. Lett. 1994, 65, 2648.   

    18. [18]

      (17) Kogej, T.; Beljonne, D.; Meyers, F.; Perry, J.W.; Marder, S. R.; Brédas, J. L. Chem. Phys. Lett. 1998, 298, 1.   

    19. [19]

      (18) Orr, B. J.; Ward, J. F. Mol. Phys. 1971, 20, 513.   

    20. [20]

      (19) Bishop, D. M.; Luis, J. M.; Kirtman, B. J. Chem. Phys. 2002, 116,9729.   

    21. [21]

      (20) Albota, M.; Beljonne, D.; Brédas, J. L.; Ehrlich, J. E.; Fu, J. Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughor, D.; Perry, J.W.; Rö ckel, H.; Rumi, M.; Subramaniam, G.; Webb,W.W.; Wu, X. L.; Xu, C. Science 1998, 281, 1653.   

    22. [22]

      (21) Beljonne, D.; Wenseleers,W.; Zojer, E.; Shuai, Z.; Vogel, H.; Pond, S. J. K.; Perry, J.W.; Marder, S. R.; Brédas, J. L. Adv. Funct. Mater. 2002, 12, 631.

    23. [23]

      (22) Zhou, X.; Ren, A. M.; Feng, J. K. Chem. Eur. J. 2004, 10, 5623.   

    24. [24]

      (23) Yang, Z. D.; Feng, J. K.; Ren, A. M.; Sun, C. C. Inorg. Chem.2008, 47, 10841.   

    25. [25]

      (24) Li,W.C.; Feng, J.K.; Ren, A.M.; Sun, C.C.; Yu, X.Q.; Wang, J.J.Chem. J. Chin. Univ. 2010, 31, 100.

    26. [26]

      [李文超, 封继康, 任爱民,孙家锺, 于晓强, 王军杰. 高等学校化学学报, 2010, 31, 100.]

    27. [27]

      (25) Zhao, Y.; Ren, A. M.; Zhang, X. B.; Feng, J. K. Acta Chim. Sin.2008, 66, 15.

    28. [28]

      [赵杨, 任爱民, 张祥标, 封继康. 化学学报,2008, 66, 15.]

    29. [29]

      (26) Zhao, Y.; Ren, A. M.; Feng, J. K.; Zhou, X.; Ai, X. C.; Su,W. J.Phys. Chem. Chem. Phys. 2009, 11, 11538.

    30. [30]

      (27) mpper, R.; Mair, H.J.; Polborn, K. Synthesis 1997, 6, 696.

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    10. [10]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    13. [13]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    14. [14]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    15. [15]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    16. [16]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    17. [17]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    18. [18]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    19. [19]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    20. [20]

      Wei Gao Jinyue Yang Wenwei Zhang . Practice and Exploration of Promoting the “Double Reduction” Work with Popular Science Resources in Universities. University Chemistry, 2024, 39(9): 385-391. doi: 10.3866/PKU.DXHX202311008

Metrics
  • PDF Downloads(1118)
  • Abstract views(2488)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return