Citation: LI Wen-Xin, HU Lin-Hua, DAI Song-Yuan. Core-Shell Structure of Y2O3/TiO2 for Use in Dye Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2367-2372. doi: 10.3866/PKU.WHXB20111011 shu

Core-Shell Structure of Y2O3/TiO2 for Use in Dye Sensitized Solar Cells

  • Received Date: 4 July 2011
    Available Online: 17 August 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CBA00700) (973) (2011CBA00700) 国家高技术研究发展计划项目(863) (2009AA050603, 2011AA050527) (863) (2009AA050603, 2011AA050527)中国科学院知识创新工程重要方向项目(KGCX2-YW-326)资助 (KGCX2-YW-326)

  • The deposition of a thin insulating layer around the TiO2 film to form a"core-shell"structure is a promising approach for the modification of electrodes. This is currently one of the focuses in the dye sensitized solar cell (DSC), which has received much attention for development of low-cost and simple assembly technology. In this paper, yttrium oxide (Y2O3), as a shell material, was coated onto the TiO2 film by a dipping method. The Y2O3/TiO2"core-shell"electrode was then used to fabricate the DSC. The composition and structure of the Y2O3/TiO2 film were measured. The effects of the Y2O3 layer on the flat-band potential, electron recombination, and the characteristics of DSC were investigated in detail. Results suggest that the flat-band potential of the film shifted negatively when TiO2 was coated with Y2O3 while electron recombination loss at the TiO2/electrolyte/dye interface was effectively reduced. As a result, the"core-shell"electrode provided a longer electron lifetime value compared with the uncoated TiO2 electrode and ultimately the open-circuit voltage increased dramatically. Studies show that the cell performance can be improved by the introduction of a proper amount of Y2O3 to the DSC.
  • 加载中
    1. [1]

      (1) Grätzel, M. Accounts Chem. Res. 2009, 42, 1788.  

    2. [2]

      (2) Hagfeldt, A.; Lindquist, S. E.; Grätzel, M. Sol. Energy Mater. Sol. Cells 1994, 32, 245.  

    3. [3]

      (3) Frank, A. J.; Kopidakis, N.; van de Lagemaat, J. Coord. Chem. Rev. 2004, 248, 1165.  

    4. [4]

      (4) Huang, S. Y.; Schlichthörl, G.; Nozik, A. J.; Gr?tzel, M.; Frank, A. J. J. Phys. Chem. B 1997, 101, 2576.  

    5. [5]

      (5) Ma, B. B.; Gao, R.;Wang, L. D.; Zhu, Y. F.; Shi, Y. T.; Geng, Y.; Dong, H. P.; Qiu, Y. Science China 2010, 53, 1669.  

    6. [6]

      (6) Yang, S. M.; Li. F. Y.; Huang, C. H. Science China Series B 2003, 33, 59.

    7. [7]

      [杨术明, 李富友, 黄春辉. 中国科学B辑, 2003, 33, 59.]

    8. [8]

      (7) Sheng, J.; Hu, L. H.; Xu, S. Y.; Liu,W. Q.; Mo, L. E.; Tian, H. J.; Dai, S. Y. J. Mater. Chem. 2011, 21, 5457.  

    9. [9]

      (8) Li, J.; Kong, F. T.;Wu, G. H.; Zhang, C. N.; Dai, S. Y. Acta Phys. -Chim. Sin. 2011, 27, 881.

    10. [10]

      [李洁, 孔凡太, 武国华, 张昌能, 戴松元. 物理化学学报, 2011, 27, 881.]

    11. [11]

      (9) Shi, C.W.; Ge, Q.; Li, B.; Tao, L.; Liu, Q. A. Acta Phys. -Chim. Sin. 2008, 24, 2327.

    12. [12]

      [史成武, 葛茜, 李兵, 桃李, 刘清安. 物理化学学报, 2008, 24, 2327.]

    13. [13]

      (10) Kay, A.; Grätzel, M. Chem. Mater. 2002, 14, 2930.  

    14. [14]

      (11) Zaban, A.; Chen, S. G.; Chappel, S.; Gregg, B. A. Chem. Commun. 2000, No. 22, 2231.

    15. [15]

      (12) Diamant, Y.; Chappel, S.; Chen, S. G.; Melamed, O.; Zaban, A. Coord. Chem. Rev. 2004, 248, 1271.  

    16. [16]

      (13) Menzies, D. B.; Dai, Q.; Bourgeois, L.; Caruso, R. A.; Cheng, Y. B.; Simon, G. P.; Spiccia, L. Nanotechnology 2007, 18, 125608.  

    17. [17]

      (14) Jin, L. L.; Jiang, Z. J.; Zhang, J.;Wang, S.W. J. Chin. Ceram. Soc. 2010, 38, 521.

    18. [18]

      [靳玲玲, 蒋志君, 章健, 王士维. 硅酸盐学报, 2010, 38, 521.]

    19. [19]

      (15) Weng, G. Q.; Sun, J.W.; Zhang, C. X. Rare Metals and Cemented Carbides 2005, 33, 51.

    20. [20]

      [翁国庆, 孙晋伟, 张长鑫. 稀有金属与硬质合金, 2005, 33, 51.]

    21. [21]

      (16) Zeng, D. M. Preparation and Characterization of Luminescence Film Material of Oxide. Ph. D. Dissertation, Central South University, Hunan, 2006.

    22. [22]

      [曾冬铭. 氧化物发光薄膜材料的制备及表征

    23. [23]

      [D]. 湖南: 中南大学, 2006.]

    24. [24]

      (17) Alarcón, H.; Boschloo, G.; Mendoza, P.; Solis, J. L.; Hagfeldt, A. J. Phys. Chem. B 2005, 109, 18483.  

    25. [25]

      (18) Zhuang, D. T.; Lin, H.; Li, X.; Li, J. B. J. Chin. Ceram. Soc. 2010, 38, 1848.

    26. [26]

      [庄东填, 林红, 李鑫, 李建保. 硅酸盐学报, 2010, 38, 1848.]

    27. [27]

      (19) Zeng, L. Y.; Dai, S. Y.;Wang, K. J.; Kong, F. T.; Hu, L. H. Acta Energiae Sol. Sin. 2005, 26, 489.

    28. [28]

      [曾隆月, 戴松元, 王孔嘉, 孔凡太, 胡林华. 太阳能学报, 2005, 26, 489.]

    29. [29]

      (20) Dai, J.; Hu, L. H.; Liu,W. Q.; Dai, S. Y. Acta Phys. Sin. 2008, 57, 5310.

    30. [30]

      [戴俊, 胡林华, 刘伟庆, 戴松元. 物理学报, 2008, 57, 5310.]

    31. [31]

      (21) Redmond, G.; Fitzmaurice, D. J. Phys. Chem. 1993, 97, 1426.  

    32. [32]

      (22) Rothenberger, G.; Fitzmaurice, D.; Grätzel, M. J. Phys. Chem. 1992, 96, 5983.

    33. [33]

      (23) Enright, B.; Redmond, G.; Fitzmaurice, D. J. Phys. Chem. 1994, 98, 6195.  

    34. [34]

      (24) Wang, Q.; Ito, S.; Grätzel, M.; Fabregat-Santia , F.; Mora-Seró, I.; Bisquert, J.; Bessho, T.; Imai, H. J. Phys. Chem. B 2006, 110, 25210.  

    35. [35]

      (25) Dai, S. Y. Study on Dye-sensitized Nanocrystalline TiO2 Solar Cells. Ph. D. Dissertation, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 2001.

    36. [36]

      [戴松元. 染料敏化纳米薄膜太阳电池的研究

    37. [37]

      [D]. 合肥: 中国科学院等离子体物理研究所, 2001.]

    38. [38]

      (26) Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. J. Am. Chem. Soc. 2003, 125, 475.  

  • 加载中
    1. [1]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    2. [2]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    7. [7]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    8. [8]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    9. [9]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    10. [10]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    13. [13]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    14. [14]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    15. [15]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

Metrics
  • PDF Downloads(1022)
  • Abstract views(2347)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return