Citation: DU Xiao-Qing, LI Hui-Qin, ZHU Qi-Rong, ZOU Zhi-Qiang, LIANG Qi. Growth and Nanotribological Properties of C60 Multilayer Films on Si(111)-7×7 Surface[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2457-2461. doi: 10.3866/PKU.WHXB20111010 shu

Growth and Nanotribological Properties of C60 Multilayer Films on Si(111)-7×7 Surface

  • Received Date: 27 June 2011
    Available Online: 17 August 2011

    Fund Project: 国家自然科学基金(10974134)资助项目 (10974134)

  • C60 layer by layer films without clusters were obtained on Si(111)-7×7 reconstructed surface by controlling parameters such as the evaporation speed and the temperature of substrate during the growth process. The experiments were carried out under ultra-high vacuum (UHV) using molecular beam epitaxy (MBE). These films were observed by ultra-high vacuum scanning tunneling microscopy (UHV-STM) and the mechanism of this phenomenon was analyzed. The adhesion and frictional force curves of these C60 films with different layers were measured. Their frictional properties were found to be affected by the number of layers. The frictional force decreased obviously with the increase in layers and the frictional coefficient also showed a downward tendency. Our simulation showed that adhesion was not the main effect that led to a decrease in the frictional force. Since the increase of layers leads to a higher level of rotation for C60 molecules, we conclude that the decrease in the frictional force is caused by the rotation of the C60 molecules. C60 molecule acts as"nano rolling bearing"here. That is, the rotation of the C60 molecules provides a channel for energy dissipation in the microstructure. These kinds of multilayer films make it possible for us to study the relationship between the rotation of C60 molecule and its other properties.
  • 加载中
    1. [1]

      (1) Kroto, H. S.; Heath, J. R.; O'Brian, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.  

    2. [2]

      (2) Kratschmer,W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354.  

    3. [3]

      (3) Chen, D. M.; Xu, H.; Creager,W. N.; Burnett, P. J. Vac. Sci. Technol. B 1994, 12, 1910.

    4. [4]

      (4) Cepek, C.; Schiavuta, P.; Sancrotti, M.; Pedio, M. Phys. Rev. B 1999, 60, 2068.  

    5. [5]

      (5) Sakamoto, K.; Kondo, D.; Ushimi, Y.; Harada, M.; Kimura, A.; Kakizaki, A.; Suto, S. Phys. Rev. B 1999, 60, 2579.  

    6. [6]

      (6) Suto, S.; Sakamoto, K.; Kondo, D.;Wakita, T.; Kimura, A.; Kakizaki, A.; Hu, C.W.; Kasuya, A. Surf. Sci. 1999, 438, 242.  

    7. [7]

      (7) Sakamoto, K.; Kondo, D.; Ushimi, Y.; Kimura, A.; Kakizaki, A.; Suto, S. Surf. Sci. 1999, 438, 248.  

    8. [8]

      (8) Sakamoto, K.;Wakita, T.; Kondo, D.; Harasawa, A.; Kinoshita, T.; Uchida,W.; Kasuvya, A. Surf. Sci. 2002, 499, 63.  

    9. [9]

      (9) Ulbricht, H.; Moos, G.; Hertel, T. Phys. Rev. Lett. 2003, 90, 095501.  

    10. [10]

      (10) Nakaya, M.; Nakayama, T.; Kuwahara, Y.; Aono, M. Surf. Sci. 2006, 600, 2810.  

    11. [11]

      (11) Feng, M.; Zhao, J.; Petek, H. Science 2008, 320, 359.  

    12. [12]

      (12) Li, Y. Z.; Chander, M.; Patrin, J. C.;Weaver, J. H.; Chibante, L. P. F.; Smalley, R. E. Science 1991, 252, 547.  

    13. [13]

      (13) Li, Y. Z.; Chander, M.; Patrin, J. C.;Weaver, J. H.; Chibante, L. P. F.; Smalley, R. E. Science 1991, 253, 429.  

    14. [14]

      (14) Chen, D.; Sarid, D. Phys. Rev. B 1994, 49, 7612.  

    15. [15]

      (15) Sakamoto, K.; Harada, M.; Kondo, D.; Kimura, A.; Suto, S. Phys. Rev. B 1998, 58, 13951.  

    16. [16]

      (16) Park, S. H.; Jeong, J. G.; Kim, H. J.; Park, S. H.; Cho, M. H.; Cho, S.W.; Yi, Y.; Heo. M. Y.; Sohn, H. Appl. Phys. Lett. 2010, 96, 013302.  

    17. [17]

      (17) Brommer, K. D.; Needels, M.; Larson, B.; Joannopoulos, J. D. Phys. Rev. Lett. 1992, 68, 1355.  

    18. [18]

      (18) Tsuyoshi, Y. J. Vac. Sci. Technol. B 1994, 12, 1932.

    19. [19]

      (19) Suto, S.; Sakamoto, K.;Wakita, T.; Harada, M.; Kasuya, A. Surf. Sci. 1998, 402-404, 523.

    20. [20]

      (20) Lee, J. Y.; Kang, M. H. Surf. Sci. 2008, 602, 1408.  

    21. [21]

      (21) Sakamoto, K.; Kondo, D.; Ohno, K.; Kimura, A.; Kakizaki, A.; Suto, S.; Uchida,W.; Kasuya, A. J. Appl. Phys. 2000, 39, 4536.  

    22. [22]

      (22) Levinson, J. A.; Hamza, A. V.; Shaqfeh, E. S. G.; Balooch, M. J. Vac. Sci. Technol. A 1998, 16, 2385.  

    23. [23]

      (23) Xu, H.; Chen, D. M.; Creager,W. N. Phys. Rev. Lett. 1993, 70, 1850.  

    24. [24]

      (24) Johnson, R. D.; Yannoni, C. S.; Meijer, G.; Dorn, H. C.; Salem, J. R.; Bethune, D. S. Science 1992, 255, 1235.  

    25. [25]

      (25) Chen, D.; Sarid, D. Surf. Sci. 1994, 318, 74.  

    26. [26]

      (26) Liang, Q.; Li, H. N.; Xu, Y. B.; Xiao, X. D. J. Phys. Chem. B 2006, 110, 403

    27. [27]

      (27) Johnson, K. L.; Kendall, K. K.; Roberts, A. D. Proc. R. Soc. London Sect. A 1971, 324, 301

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    3. [3]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    4. [4]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    5. [5]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    6. [6]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    7. [7]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    8. [8]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    9. [9]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    10. [10]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    11. [11]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    12. [12]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    13. [13]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    14. [14]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    17. [17]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    18. [18]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

Metrics
  • PDF Downloads(942)
  • Abstract views(1986)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return