Citation: DU Xiao-Qing, LI Hui-Qin, ZHU Qi-Rong, ZOU Zhi-Qiang, LIANG Qi. Growth and Nanotribological Properties of C60 Multilayer Films on Si(111)-7×7 Surface[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2457-2461. doi: 10.3866/PKU.WHXB20111010 shu

Growth and Nanotribological Properties of C60 Multilayer Films on Si(111)-7×7 Surface

  • Received Date: 27 June 2011
    Available Online: 17 August 2011

    Fund Project: 国家自然科学基金(10974134)资助项目 (10974134)

  • C60 layer by layer films without clusters were obtained on Si(111)-7×7 reconstructed surface by controlling parameters such as the evaporation speed and the temperature of substrate during the growth process. The experiments were carried out under ultra-high vacuum (UHV) using molecular beam epitaxy (MBE). These films were observed by ultra-high vacuum scanning tunneling microscopy (UHV-STM) and the mechanism of this phenomenon was analyzed. The adhesion and frictional force curves of these C60 films with different layers were measured. Their frictional properties were found to be affected by the number of layers. The frictional force decreased obviously with the increase in layers and the frictional coefficient also showed a downward tendency. Our simulation showed that adhesion was not the main effect that led to a decrease in the frictional force. Since the increase of layers leads to a higher level of rotation for C60 molecules, we conclude that the decrease in the frictional force is caused by the rotation of the C60 molecules. C60 molecule acts as"nano rolling bearing"here. That is, the rotation of the C60 molecules provides a channel for energy dissipation in the microstructure. These kinds of multilayer films make it possible for us to study the relationship between the rotation of C60 molecule and its other properties.
  • 加载中
    1. [1]

      (1) Kroto, H. S.; Heath, J. R.; O'Brian, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.  

    2. [2]

      (2) Kratschmer,W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354.  

    3. [3]

      (3) Chen, D. M.; Xu, H.; Creager,W. N.; Burnett, P. J. Vac. Sci. Technol. B 1994, 12, 1910.

    4. [4]

      (4) Cepek, C.; Schiavuta, P.; Sancrotti, M.; Pedio, M. Phys. Rev. B 1999, 60, 2068.  

    5. [5]

      (5) Sakamoto, K.; Kondo, D.; Ushimi, Y.; Harada, M.; Kimura, A.; Kakizaki, A.; Suto, S. Phys. Rev. B 1999, 60, 2579.  

    6. [6]

      (6) Suto, S.; Sakamoto, K.; Kondo, D.;Wakita, T.; Kimura, A.; Kakizaki, A.; Hu, C.W.; Kasuya, A. Surf. Sci. 1999, 438, 242.  

    7. [7]

      (7) Sakamoto, K.; Kondo, D.; Ushimi, Y.; Kimura, A.; Kakizaki, A.; Suto, S. Surf. Sci. 1999, 438, 248.  

    8. [8]

      (8) Sakamoto, K.;Wakita, T.; Kondo, D.; Harasawa, A.; Kinoshita, T.; Uchida,W.; Kasuvya, A. Surf. Sci. 2002, 499, 63.  

    9. [9]

      (9) Ulbricht, H.; Moos, G.; Hertel, T. Phys. Rev. Lett. 2003, 90, 095501.  

    10. [10]

      (10) Nakaya, M.; Nakayama, T.; Kuwahara, Y.; Aono, M. Surf. Sci. 2006, 600, 2810.  

    11. [11]

      (11) Feng, M.; Zhao, J.; Petek, H. Science 2008, 320, 359.  

    12. [12]

      (12) Li, Y. Z.; Chander, M.; Patrin, J. C.;Weaver, J. H.; Chibante, L. P. F.; Smalley, R. E. Science 1991, 252, 547.  

    13. [13]

      (13) Li, Y. Z.; Chander, M.; Patrin, J. C.;Weaver, J. H.; Chibante, L. P. F.; Smalley, R. E. Science 1991, 253, 429.  

    14. [14]

      (14) Chen, D.; Sarid, D. Phys. Rev. B 1994, 49, 7612.  

    15. [15]

      (15) Sakamoto, K.; Harada, M.; Kondo, D.; Kimura, A.; Suto, S. Phys. Rev. B 1998, 58, 13951.  

    16. [16]

      (16) Park, S. H.; Jeong, J. G.; Kim, H. J.; Park, S. H.; Cho, M. H.; Cho, S.W.; Yi, Y.; Heo. M. Y.; Sohn, H. Appl. Phys. Lett. 2010, 96, 013302.  

    17. [17]

      (17) Brommer, K. D.; Needels, M.; Larson, B.; Joannopoulos, J. D. Phys. Rev. Lett. 1992, 68, 1355.  

    18. [18]

      (18) Tsuyoshi, Y. J. Vac. Sci. Technol. B 1994, 12, 1932.

    19. [19]

      (19) Suto, S.; Sakamoto, K.;Wakita, T.; Harada, M.; Kasuya, A. Surf. Sci. 1998, 402-404, 523.

    20. [20]

      (20) Lee, J. Y.; Kang, M. H. Surf. Sci. 2008, 602, 1408.  

    21. [21]

      (21) Sakamoto, K.; Kondo, D.; Ohno, K.; Kimura, A.; Kakizaki, A.; Suto, S.; Uchida,W.; Kasuya, A. J. Appl. Phys. 2000, 39, 4536.  

    22. [22]

      (22) Levinson, J. A.; Hamza, A. V.; Shaqfeh, E. S. G.; Balooch, M. J. Vac. Sci. Technol. A 1998, 16, 2385.  

    23. [23]

      (23) Xu, H.; Chen, D. M.; Creager,W. N. Phys. Rev. Lett. 1993, 70, 1850.  

    24. [24]

      (24) Johnson, R. D.; Yannoni, C. S.; Meijer, G.; Dorn, H. C.; Salem, J. R.; Bethune, D. S. Science 1992, 255, 1235.  

    25. [25]

      (25) Chen, D.; Sarid, D. Surf. Sci. 1994, 318, 74.  

    26. [26]

      (26) Liang, Q.; Li, H. N.; Xu, Y. B.; Xiao, X. D. J. Phys. Chem. B 2006, 110, 403

    27. [27]

      (27) Johnson, K. L.; Kendall, K. K.; Roberts, A. D. Proc. R. Soc. London Sect. A 1971, 324, 301

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    3. [3]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    4. [4]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    5. [5]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    6. [6]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    7. [7]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    8. [8]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    9. [9]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    10. [10]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    11. [11]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    14. [14]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    15. [15]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    18. [18]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    19. [19]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(942)
  • Abstract views(1885)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return