Citation: RAO Gui-Shi, CHENG Mei-Qin, ZHONG Yan, DENG Xiao-Cong, YI Fei, CHEN Zhi-Ren, ZHONG Qi-Ling, FAN Feng-Ru, REN Bin, TIAN Zhong-Qun. Preparation of High Catalytic Platinum Hollow Nanospheres and Their Electrocatalytic Performance for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2373-2378. doi: 10.3866/PKU.WHXB20111008 shu

Preparation of High Catalytic Platinum Hollow Nanospheres and Their Electrocatalytic Performance for Methanol Oxidation

  • Received Date: 29 March 2011
    Available Online: 17 August 2011

    Fund Project: 国家自然科学基金(20663002) (20663002) 厦门大学固体表面物理化学国家重点实验室基金(200511) (200511)江西省自然科学基金(0620025)资助项目 (0620025)

  • Pt hollow nanospheres with a particle diameter of 110 nm and a shell thickness of about 5 nm were synthesized in bulk using selenium colloids with a particle diameter of 100 nm as a template. Transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), energy dispersive X-ray spectrocopy (EDX), and scanning electron microscopy (SEM) were used to determine their morphologies and structures. The electrocatalytic activity of the Pt hollow nanospheres modifying glassy carbon electrode toward methanol oxidation was measured by using methanol as the probe molecule. We show that the multiporous Pt hollow nanospheres composited of atomic clusters have a uniform particle size, od dispersity, a stable structure, a big surface area and od mass transfer performance. Cyclic voltammetry (CV) showed that when the current density of methanol oxidation was 0.10 mA·cm-2 and upon positive scanning the methanol oxidation potential of the Pt hollow nanospheres was around 110 and 64 mV negative than that of the Pt solid nanoparticles and Pt black, respectively. Upon negative scanning the former species was about 51 and 13 mV negative than that of the latter two species, respectively. After 800 segments cyclic voltammetry scanning, upon positive scanning the peak current density of methanol oxidation on the Pt hollow nanospheres was found to be 13 and 15 times as high as that of the Pt solid nanoparticles and Pt black, respectively. Upon negative scanning the former species was about 19 and 38 times as high as that of the two latter species. Our experimental results show that the Pt hollow nanospheres have od electrocatalytic activity and stability toward methanol oxidation.
  • 加载中
    1. [1]

      (1) Kuver, A.;Wielstih,W. J. Power Sources 1998, 74, 211.  

    2. [2]

      (2) Arico, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, 1, 133.  

    3. [3]

      (3) Hogarth, M. P.; Ralph, T. R. Platinum Metals Rev. 2002, 46, 146.

    4. [4]

      (4) Ren, X.; Zelenay, P.; Thomas, S.; Davey, J.; ttesfeld, S. J. Power Sources 2000, 86, 111.  

    5. [5]

      (5) Witham, C. K.; Chun,W.; Valdez, T. I.; Narayanan, S. R. Electrochem. Solid State Lett. 2000, 3, 497.

    6. [6]

      (6) Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Science 1998, 280, 1735.  

    7. [7]

      (7) Cruickshank, J.; Scott, K. J. Power Source 1998, 70, 40.  

    8. [8]

      (8) Gurau, B.; Smotkin, E. S. J. Power Sources 2002, 112, 339.  

    9. [9]

      (9) Kauranen, P. S.; Skou, E. J. Electroanal. Chem. 1996, 408, 189.  

    10. [10]

      (10) Miyake, M.;Wainright, J. S.; Savinell, R. R. J. Electrochem. Soc. 2001, 148, A905.

    11. [11]

      (11) Hobson, L. J.; Nakano, Y.; Ozq, H.; Hayase, S. J. Power Sources 2002, 104, 79.  

    12. [12]

      (12) Mikhaylova, A. A.; Khazova, O. A. J. Electroanal. Chem. 2000, 225, 480.

    13. [13]

      (13) Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226.  

    14. [14]

      (14) Nabika, H.; Deki, S. J. Phys. Chem. B 2003, 107, 9161.  

    15. [15]

      (15) Schmid, G. Clusters anc Colloids: From Theory to Application; VCH:Weinheim, 1994.

    16. [16]

      (16) Yu, A.; Liang, Z. J.; Cho, J. H.; Caruso, F. Nano Lett. 2003, 3, 1203.  

    17. [17]

      (17) Stamm, K. L.; Garno, J. C.; Liu, G. Y.; Brock, S. L. J. Am. Chem. Soc. 2003, 125, 4036.  

    18. [18]

      (18) Alivisatos, A. P. Science 1996, 271, 933.  

    19. [19]

      (19) El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257.  

    20. [20]

      (20) Hu, J. T.; Odom, T.W.; Lieber, C. M. Accounts Chem. Res. 1999, 32, 435.  

    21. [21]

      (21) Sun, Y. G.; Xia, Y. N. Science 2002, 298, 2176.  

    22. [22]

      (22) Hu, J. Q.; Zhang, Y.; Liu, B.; Liu, J. X.; Zhou, H. H.; Xu, Y. F.; Jiang, Y. X.; Yang, Z. L.; Tian, Z. Q. J. Am. Chem. Soc. 2004, 126, 9470.  

    23. [23]

      (23) Teng, X.W.; Black, D.;Watkins, N. J.; Gao, Y. L.; Yang, H. Nano Lett. 2003, 3, 261.  

    24. [24]

      (24) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.;Wang, Z. L. Science 2007, 316, 732.  

    25. [25]

      (25) Zhang, B.; Li, J. F.; Zhong, Q. L.; Ren, B.; Tian, Z. Q.; Zou, S. Z. Langmuir 2005, 21, 7449.  

    26. [26]

      (26) Mayers, B.; Jiang, X.; Sunderland, D.; Cattle, B.; Xia, Y. J. Am. Chem. Soc. 2003, 125, 13364.  

    27. [27]

      (27) Guo, S. J.; Dong, S. J.;Wang, E. K. J. Phys Chem. C 2009, 113, 5485.  

    28. [28]

      (28) Kim, S.W.; Kim, M.; Lee,W. Y.; Hyeon, T. J. Am. Chem. Soc. 2002, 124, 7642.  

    29. [29]

      (29) Sun, Y.; Xia, Y. Anal. Chem. 2002, 74, 5297.  

    30. [30]

      (30) Caruso, F. O. Chem. Eur. J. 2000, 6 (3), 413; Adv. Mater. 2001, 13 (1), 11.

    31. [31]

      (31) Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.;Wan, L. J.; Bai, C. L. Angew. Chem. Int. Edit. 2004, 43, 1540.  

    32. [32]

      (32) Chem, Z.W.;Waje, M.; Li,W. Z.; Yan, Y. S. Angew. Chem. 2007, 119, 4138.

    33. [33]

      (33) Iida, M.; Sasaki, T.;Watanabe, M. Chem. Mater. 1998, 10, 3780.  

    34. [34]

      (34) Liu, J. G.;Wilcox, D. L. J. Mater. Res. 1994, 10,84.

    35. [35]

      (35) Hotz, J.; Meier,W. Langmuir 1998, 14, 1031.  

    36. [36]

      (36) Fowler, C. E.; Khushalani, D. D.; Mann, S. Chem. Commun. 2001, 19, 2028.

    37. [37]

      (37) Zhao, M.; Sun, L.; Crooks, R. M. J. Am. Chem. Soc. 1998, 120, 4877.  

    38. [38]

      (38) Xu, H. L.;Wang,W. Z. Angew. Chem. Int. Edit. 2007, 46, 1.  

    39. [39]

      (39) Wijnhoven, J. E. G.; Vos,W. L. Science 1998, 281, 802.  

    40. [40]

      (40) Caruso, F.; Caruso, R. A. Science 1998, 282, 1111.  

    41. [41]

      (41) Velev, O. D.; Kaler, E.W. Adv. Mater. 2000, 12, 531.  

    42. [42]

      (42) Kim, S.W.; Kim, M.; Lee,W. Y.; Hyeon, T. J. Am. Chem. Soc. 2002, 124, 7642.  

    43. [43]

      (43) Graf, C.; Blaaderen, A. Langmuir 2002, 18, 524.  

    44. [44]

      (44) Zhang, J. H.; Zhan, P.; Liu, H. Y.;Wang, Z. L.; Ming, N. B. Mater. Lett. 2006, 60, 280.  

    45. [45]

      (45) Sun, Y.; Mayers, B.T.; Xia, Y. Nano Lett. 2002, 2, 481.  

    46. [46]

      (46) Teranishi, H.; Hosoe, M.; Miyake, M. Adv. Mater. 1997, 9, 65.  

    47. [47]

      (47) Xia, Y.; Gates, B.; Yin, Y.; Lu. Y. Adv. Mater. 2000, 12, 693.  

    48. [48]

      (48) Yan, L. L.; Jiang, Q. N.; Liu, D. Y.; Zhong, Y.;Wen, F. P.; Deng, X. C.; Zhong, Q. L.; Ren, B.; Tian, Z. Q. Acta Phys. -Chim. Sin. 2010, 26 (9), 2337.

    49. [49]

      [颜亮亮, 江庆宁, 刘德宇, 钟艳, 温飞鹏, 邓小聪, 钟起玲, 任斌, 田中群. 物理化学学报, 2010, 26 (9), 2337.]

    50. [50]

      (49) Trasatti, S.; Petrii,O. A. Pure Appl. Chem. 1991, 63, 711.

    51. [51]

      (50) Sun, S. G.; Chen, A. C.; Huang, T. S.; Li, J. B.; Tian, Z.W. J. Electroanal. Chem.1992, 213, 340.

  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    3. [3]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    4. [4]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    5. [5]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    6. [6]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    7. [7]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    8. [8]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    9. [9]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    10. [10]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    18. [18]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

Metrics
  • PDF Downloads(1642)
  • Abstract views(3063)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return