Citation: CUI Chao-Jie, QIAN Wei-Zhong, WEI Fei. Water-Assisted Growth of Carbon Nanotubes over Co/Mo/Al2O3 Catalyst[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2462-2468. doi: 10.3866/PKU.WHXB20111007 shu

Water-Assisted Growth of Carbon Nanotubes over Co/Mo/Al2O3 Catalyst

  • Received Date: 13 May 2011
    Available Online: 16 August 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CB932602) (973) (2011CB932602)国家自然科学重点基金(20736007, 20736004)资助 (20736007, 20736004)

  • We studied the growth of carbon nanotubes (CNTs) over a Co/Mo/Al2O3 catalyst by decomposing ethylene with or without the assistance of water. The optimal amount of water was determined to be 0.6% (φ) since excess water removed the amorphous carbon around the catalysts and also directly etched the CNTs at high temperature. Under this condition, the yield of CNTs can be increased from 3.7 g·g-1, based on the mass of catalyst, to 70 g·g-1 within 1 h. The time-dependent online conversion of ethylene and the ratio of effective catalysts suggested that the effect of water is insignificant in the final growth period of the CNTs compared to that at the beginning. The correlation between the relative activity of the catalyst and the relative density of the CNT agglomerate suggests that the lack of growth volume inside the CNT agglomerate results in a gradual deactivation of the catalyst in the final CNT growth period. Raman characterization suggests that the degree of CNT defects increases with the bulk density of the CNT agglomerates since the mechanical resistance that is exposed on CNTs inside the agglomerate increases with reaction time. Thermal-gravimetric analysis indicates that the purity of CNTs ranges from 95.0% to 99.9% for a product with average purity of 99.2%. The non-uniform purity of the CNTs is due to the difference in mechanical resistance inside and outside the CNT agglomerate. The growth of CNTs outside the agglomerate is nearly free of mechanical resistance compared to that inside the agglomerate and, consequently, results in a high yield and high purity for the CNTs. These results suggest that it is necessary to control the agglomerate size and the structure, and to use a reactor with a large reactor volume for the growth of CNTs with low resistance and with high yield.
  • 加载中
    1. [1]

      (1) Iijima, S. Nature 1991, 354, 56.  

    2. [2]

      (2) Zhou,W. Y.; Bai, X. D.;Wang, E. G.; Xie, S. S. Adv. Mater. 2009, 21, 4565.  

    3. [3]

      (3) Su, D. S.; Schlogl, R. ChemSusChem 2010, 3, 136.  

    4. [4]

      (4) Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Adv. Mater. 2010, 22, E28.

    5. [5]

      (5) Wei, F.; Zhang, Q.; Qian,W. Z.; Yu, H.;Wang, Y.; Luo, G. H.; Xu, G. H.;Wang, D. Z. Powder Technol. 2008, 183, 10.  

    6. [6]

      (6) Wang, M. Z.; Li, F.; Yang, Q. H.; Cheng, H. M. New Carbon Mater. 2003, 18, 250.

    7. [7]

      [王茂章, 李峰, 杨全红, 成会明. 新型碳材料, 2003, 18, 250.]

    8. [8]

      (7) Li, Y.; Zhang, X. Q.; Xu, J. M.; Tao, X. Y.; Chen, F.; Liu, F. J. Inorg. Mater. 2005, 20, 71.

    9. [9]

      [李昱, 张孝彬, 徐军明, 陶新永, 陈飞, 刘芙. 无机材料学报, 2005, 20, 71.]

    10. [10]

      (8) Qian,W. Z.; Tian, T.; Guo, C. Y.;Wen, Q.; Li, K. J.; Zhang, H. B.; Shi, H. B.;Wang, D. Z.; Liu, Y.; Zhang, Q.; Zhang, Y. X.; Wei, F.;Wang, Z.W.; Li, X. D.; Li, Y. D. J. Phys. Chem. C 2008, 112, 7588.  

    11. [11]

      (9) Patil, K. N.; Solanki, C. S. J. Nano Res. 2009, 6, 75.  

    12. [12]

      (10) Rashidi, A. M.; Akbarnejad, M. M.; Khodadadi, A. A.; Mortazavi, Y.; Ahmadpourd, A. Nanotechnology 2007, 18, 315605.  

    13. [13]

      (11) Xu, C. B.; Zhu, J. Nanotechnology 2004, 15, 1671.  

    14. [14]

      (12) Lim, S.; Li, N.; Fang, F.; Pinault, M.; Zoican, C.;Wang, C.; Fadel, T.; Pfefferle, L. D.; Haller, G. L. J. Phys. Chem. C 2008, 112, 12442.  

    15. [15]

      (13) Zhou, Q. M.;Wang, Y.; Tang, P. P.;Wu, X. M.; Lin, G. D.; Zhang, H. B. Chin. J. Appl. Chem. 2005, 22, 118.

    16. [16]

      [周金梅, 王毅, 汤培平, 武小满, 林国栋, 张鸿斌. 应用化学, 2005, 22, 118.]

    17. [17]

      (14) Liu, J. X.; Xie, Y. C. Acta Phys. -Chim. Sin. 2003, 22, 1093.

    18. [18]

      [刘霁欣, 谢有畅. 物理化学学报, 2003, 22, 1093.]

    19. [19]

      (15) Li, Y. D.; Li, D. X.;Wang, G.W. Catal. Today 2011, 162, 1.  

    20. [20]

      (16) Duan, X. J.; He, M. S.;Wang, X.; Zhang, J.; Liu, Z. F. Chin. Sci. Bull. 2004, 49, 377.

    21. [21]

      [段小洁, 何茂帅, 王璇, 张锦, 刘忠范. 科学通报, 2004, 49, 377.]

    22. [22]

      (17) Amelinckx, S.; Zhang, X. B.; Bernaerts, D.; Zhang, X. F.; Ivanov, V.; Nagy, J. B. Science 1994, 265, 635.  

    23. [23]

      (18) Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Science 2004, 306, 1362.  

    24. [24]

      (19) Wen, Q.; Qian,W. Z.;Wei, F.; Liu, Y.; Ning, G. Q.; Zhang, Q. Chem. Mater. 2007, 19, 1226.  

    25. [25]

      (20) Wen, Q.; Zhang, R. F.; Qian,W. Z.;Wang, Y. R.; Tan, P. H.; Nie, J. Q.;Wei, F. Chem. Mater. 2010, 22, 1294.  

    26. [26]

      (21) Qian,W. Z.; Yu, H.;Wei, F.; Zhang, Q. F.;Wang, Z.W. Carbon 2002, 40, 2968.  

    27. [27]

      (22) Avdeeva, L. B.; ncharova, O. V.; Kochubey, D. I.; Zaikovskii, V. I.; Plyasova, L. M.; Nov rodov, B. N.; Shaikhutdinov, S. K. Appl. Catal. A-Gen. 1996, 141, 117.  

    28. [28]

      (23) Feng, C. Q.; Yao, Y. G.; Zhang, J.; Liu, Z. F. Nano Res. 2009, 2, 768.

    29. [29]

      (24) Cheng, H. M.; Li, F.; Sun, X.; Brown, S.; Pimenta, M. A.; Marucci, A.; Dresselhaus, G.; Dresselhaus, M. S. Chem. Phys. Lett. 1998, 289, 602.  

    30. [30]

      (25) Li,W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou,W. Y.; Zhao, R. A.;Wang, G. Science 1996, 274, 1701.  

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    5. [5]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    6. [6]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    9. [9]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    10. [10]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    11. [11]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    14. [14]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    15. [15]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    16. [16]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    20. [20]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

Metrics
  • PDF Downloads(1230)
  • Abstract views(3270)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return