Citation:
CUI Chao-Jie, QIAN Wei-Zhong, WEI Fei. Water-Assisted Growth of Carbon Nanotubes over Co/Mo/Al2O3 Catalyst[J]. Acta Physico-Chimica Sinica,
;2011, 27(10): 2462-2468.
doi:
10.3866/PKU.WHXB20111007
-
We studied the growth of carbon nanotubes (CNTs) over a Co/Mo/Al2O3 catalyst by decomposing ethylene with or without the assistance of water. The optimal amount of water was determined to be 0.6% (φ) since excess water removed the amorphous carbon around the catalysts and also directly etched the CNTs at high temperature. Under this condition, the yield of CNTs can be increased from 3.7 g·g-1, based on the mass of catalyst, to 70 g·g-1 within 1 h. The time-dependent online conversion of ethylene and the ratio of effective catalysts suggested that the effect of water is insignificant in the final growth period of the CNTs compared to that at the beginning. The correlation between the relative activity of the catalyst and the relative density of the CNT agglomerate suggests that the lack of growth volume inside the CNT agglomerate results in a gradual deactivation of the catalyst in the final CNT growth period. Raman characterization suggests that the degree of CNT defects increases with the bulk density of the CNT agglomerates since the mechanical resistance that is exposed on CNTs inside the agglomerate increases with reaction time. Thermal-gravimetric analysis indicates that the purity of CNTs ranges from 95.0% to 99.9% for a product with average purity of 99.2%. The non-uniform purity of the CNTs is due to the difference in mechanical resistance inside and outside the CNT agglomerate. The growth of CNTs outside the agglomerate is nearly free of mechanical resistance compared to that inside the agglomerate and, consequently, results in a high yield and high purity for the CNTs. These results suggest that it is necessary to control the agglomerate size and the structure, and to use a reactor with a large reactor volume for the growth of CNTs with low resistance and with high yield.
-
Keywords:
-
Carbon nanotubes
, - Water,
- Yield,
- Agglomerate structure,
- Packing density,
- Defect
-
-
-
- [1]
-
[2]
(2) Zhou,W. Y.; Bai, X. D.;Wang, E. G.; Xie, S. S. Adv. Mater. 2009, 21, 4565.
- [3]
-
[4]
(4) Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Adv. Mater. 2010, 22, E28.
-
[5]
(5) Wei, F.; Zhang, Q.; Qian,W. Z.; Yu, H.;Wang, Y.; Luo, G. H.; Xu, G. H.;Wang, D. Z. Powder Technol. 2008, 183, 10.
-
[6]
(6) Wang, M. Z.; Li, F.; Yang, Q. H.; Cheng, H. M. New Carbon Mater. 2003, 18, 250.
-
[7]
[王茂章, 李峰, 杨全红, 成会明. 新型碳材料, 2003, 18, 250.]
-
[8]
(7) Li, Y.; Zhang, X. Q.; Xu, J. M.; Tao, X. Y.; Chen, F.; Liu, F. J. Inorg. Mater. 2005, 20, 71.
-
[9]
[李昱, 张孝彬, 徐军明, 陶新永, 陈飞, 刘芙. 无机材料学报, 2005, 20, 71.]
-
[10]
(8) Qian,W. Z.; Tian, T.; Guo, C. Y.;Wen, Q.; Li, K. J.; Zhang, H. B.; Shi, H. B.;Wang, D. Z.; Liu, Y.; Zhang, Q.; Zhang, Y. X.; Wei, F.;Wang, Z.W.; Li, X. D.; Li, Y. D. J. Phys. Chem. C 2008, 112, 7588.
- [11]
-
[12]
(10) Rashidi, A. M.; Akbarnejad, M. M.; Khodadadi, A. A.; Mortazavi, Y.; Ahmadpourd, A. Nanotechnology 2007, 18, 315605.
- [13]
-
[14]
(12) Lim, S.; Li, N.; Fang, F.; Pinault, M.; Zoican, C.;Wang, C.; Fadel, T.; Pfefferle, L. D.; Haller, G. L. J. Phys. Chem. C 2008, 112, 12442.
-
[15]
(13) Zhou, Q. M.;Wang, Y.; Tang, P. P.;Wu, X. M.; Lin, G. D.; Zhang, H. B. Chin. J. Appl. Chem. 2005, 22, 118.
-
[16]
[周金梅, 王毅, 汤培平, 武小满, 林国栋, 张鸿斌. 应用化学, 2005, 22, 118.]
-
[17]
(14) Liu, J. X.; Xie, Y. C. Acta Phys. -Chim. Sin. 2003, 22, 1093.
-
[18]
[刘霁欣, 谢有畅. 物理化学学报, 2003, 22, 1093.]
-
[19]
(15) Li, Y. D.; Li, D. X.;Wang, G.W. Catal. Today 2011, 162, 1.
-
[20]
(16) Duan, X. J.; He, M. S.;Wang, X.; Zhang, J.; Liu, Z. F. Chin. Sci. Bull. 2004, 49, 377.
-
[21]
[段小洁, 何茂帅, 王璇, 张锦, 刘忠范. 科学通报, 2004, 49, 377.]
-
[22]
(17) Amelinckx, S.; Zhang, X. B.; Bernaerts, D.; Zhang, X. F.; Ivanov, V.; Nagy, J. B. Science 1994, 265, 635.
-
[23]
(18) Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Science 2004, 306, 1362.
-
[24]
(19) Wen, Q.; Qian,W. Z.;Wei, F.; Liu, Y.; Ning, G. Q.; Zhang, Q. Chem. Mater. 2007, 19, 1226.
-
[25]
(20) Wen, Q.; Zhang, R. F.; Qian,W. Z.;Wang, Y. R.; Tan, P. H.; Nie, J. Q.;Wei, F. Chem. Mater. 2010, 22, 1294.
-
[26]
(21) Qian,W. Z.; Yu, H.;Wei, F.; Zhang, Q. F.;Wang, Z.W. Carbon 2002, 40, 2968.
-
[27]
(22) Avdeeva, L. B.; ncharova, O. V.; Kochubey, D. I.; Zaikovskii, V. I.; Plyasova, L. M.; Nov rodov, B. N.; Shaikhutdinov, S. K. Appl. Catal. A-Gen. 1996, 141, 117.
-
[28]
(23) Feng, C. Q.; Yao, Y. G.; Zhang, J.; Liu, Z. F. Nano Res. 2009, 2, 768.
-
[29]
(24) Cheng, H. M.; Li, F.; Sun, X.; Brown, S.; Pimenta, M. A.; Marucci, A.; Dresselhaus, G.; Dresselhaus, M. S. Chem. Phys. Lett. 1998, 289, 602.
-
[30]
(25) Li,W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou,W. Y.; Zhao, R. A.;Wang, G. Science 1996, 274, 1701.
-
-
-
[1]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[2]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[3]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[4]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[5]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
-
[6]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[7]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[8]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[9]
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
-
[10]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
-
[11]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[12]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[13]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[14]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[15]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[16]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[17]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[18]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[19]
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064
-
[20]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[1]
Metrics
- PDF Downloads(1230)
- Abstract views(3353)
- HTML views(27)