Citation:
KONG Wei-Yuan, WANG Hai-Jun, GU Fang. Depletion Potential between Two Colloid Particles Immersed in a Hard-Core Yukawa Fluid[J]. Acta Physico-Chimica Sinica,
;2011, 27(10): 2400-2405.
doi:
10.3866/PKU.WHXB20111003
-
The depletion potential between two colloid particles immersed in a hard-core Yukawa fluid was investigated by density functional theory for the depletion potential proposed by Roth, Evans, and Dietrich. An attempt was made to study the effects of several factors concerning the colloid particles and the solvent molecules on the depletion potential, which are the size ratio of the colloid particle to the solvent, the interaction between solvent molecules, the packing fraction of the solvent, and the interaction between the colloid particle and the solvent. By means of the depletion potential presented under various conditions, it is shown that the effects of these factors on the depletion potential are significant and this can provide some useful clues on regulating the interaction between colloid particles in related experiments.
-
-
-
[1]
(1) Asakura, S.; Oosawa, F. J. Chem. Phys. 1954, 22, 1255.
-
[2]
(2) Dinsmore, A. D.;Wong, D. T.; Nelson, P.; Yodh, A. G. Phys. Rev. Lett. 1998, 80, 409.
-
[3]
(3) Zaccarelli, E. J. Phys.: Condens. Matter 2007, 19, 323101.
-
[4]
(4) Roth, R.; van Roij, R.; Andrienko, D.; Mecke, K. R.; Dietrich, S. Phys. Rev. Lett. 2002, 89, 088301.
-
[5]
(5) Hiemenz, P. C.; Raja palan, R. Principles of Colloid and Surface Chemistry; Marcel Dekker Inc: New York, 1997; pp 355-399, 575-621.
-
[6]
(6) Myers, D. Surfaces, Interfaces, and Colloids: Principles and Applications;Wiley-VCH: New York, 1999; pp 214-252.
-
[7]
(7) Crocker, J. C.; Matteo, J. A.; Dinsmore, A. D.; Yodh, A. G. Phys. Rev. Lett. 1999, 82, 4352.
-
[8]
(8) G?tzelmann, B.; Evans, R.; Dietrich, S. Phys. Rev. E 1998, 57, 6785.
-
[9]
(9) Dijkstra, M.; van Roij, R.; Evans, R. Phys. Rev. E 1999, 59, 5744.
-
[10]
(10) Dijkstra, M.; van Roij, R.; Evans, R. J. Chem. Phys. 2000, 113, 4799.
-
[11]
(11) Tuinier, R.; Vliegenthart, G. A.; Lekkerkerker, H. N.W. J. Chem. Phys. 2000, 113, 10768.
-
[12]
(12) Patel, N.; E rov, S. A. J. Chem. Phys. 2004, 121, 4987.
-
[13]
(13) Yang, S.; Yan, D.; Tan, H.; Shi, A. C. Phys. Rev. E 2006, 74, 041808.
-
[14]
(14) Louis, A. A.; Bolhuis, P. G.; Meijer, E. J.; Hansen, J. P. J. Chem. Phys. 2002, 117, 1893.
-
[15]
(15) Doxastakis, M.; Chen, Y. L.; de Pablo, J. J. J. Chem. Phys. 2005, 123, 034901.
-
[16]
(16) Striolo, A.; Colina, C. M.; Gubbins, K. E.; Elvassore, N.; Lue, L. Mol. Simul. 2004, 30, 437.
-
[17]
(17) Chen, X.; Cai, J.; Liu, H.; Hu, Y. Mol. Simul. 2006, 32, 877.
-
[18]
(18) Biben, T.; Bladon, P.; Frenkel, D. J. Phys.: Condens. Matter 1996, 8, 10799.
-
[19]
(19) Dickman, R.; Attard, P.; Simonian, V. J. Chem. Phys. 1997, 107, 205.
- [20]
- [21]
-
[22]
(22) Dzubiella J.; L?wen, H.; Likos, C. N. Phys. Rev. Lett. 2003, 91, 248301.
- [23]
- [24]
- [25]
-
[26]
(26) von Grünberg, H. H.; Klein, R. J. Chem. Phys. 1999, 110, 5421.
-
[27]
(27) Roth, R.; Evans, R.; Dietrich, S. Phys. Rev. E 2000, 62, 5360.
-
[28]
(28) Melchionna, S.; Hansen, J. P. Phys. Chem. Chem. Phys. 2000, 2, 3465.
-
[29]
(29) ulding, D.; Melchionna, S. Phys. Rev. E 2001, 64, 011404.
-
[30]
(30) Davoudi, B.; Kohandel, M.; Mohammadi, M.; Tanatar, B. Phys. Rev. E 2000, 62, 6977.
-
[31]
(31) Fu, D.; Li, Y. G.;Wu, J. Z. Phys. Rev. E 2003, 68, 011403.
-
[32]
(32) Totsuji, H.; Kishimoto, T.; Totsuji, C. Phys. Rev. Lett. 1997, 78, 3113.
-
[33]
(33) Ben-Naim, A. Molecular Theory of Water and Aqueous Solutions. Part I: Understanding Water;World Scientific Publishing: Singapore, 2009; pp 426-458.
- [34]
- [35]
- [36]
- [37]
-
[38]
(38) Tang, Y. P.; Lin, Y. Z.; Li, Y. G. J. Chem. Phys. 2005, 122, 184505.
-
[39]
(39) Yang, Z.; Xu, Z. J.; Yang, X. N. Acta Phys. -Chim. Sin. 2006, 22 (12), 1460.
-
[40]
[杨振, 徐志军, 杨晓宁. 物理化学学报, 2006, 22 (12), 1460.]
-
[41]
(40) Roth, R.; Evans, R.; Lang, A.; Kahl, G. J. Phys.: Condens. Matter 2002, 14, 12063.
- [42]
-
[43]
(42) You, F. Q.; Yu, Y. X.; Gao, G. H. J. Phys. Chem. B 2005, 109, 3512.
-
[44]
(43) Yu, Y. X.; You, F. Q.; Tang, Y. P.; Gao, G. H.; Li, Y. G. J. Phys. Chem. B 2006, 110, 334.
-
[45]
(44) You, F. Q.; Yu, Y. X.; Gao, G. H. J. Chem. Phys. 2005, 123, 114705.
- [46]
-
[47]
(46) Cinacchi, G.; Martínez-Ratón, Y.; Mederos, L.; Navascués, G.; Tani, A.; Velasco, E. J. Chem. Phys. 2007, 127, 214501.
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[3]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[4]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[5]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[6]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[7]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[8]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[9]
Yunchao Li , Shanying Chen , Ke Qi , Kangning Huo , Shuxin Li , Jingyi Li , Ying Wei , Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063
-
[10]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[11]
Shanying Chen , Kangning Huo , Ke Qi , Jingyi Li , Shuxin Li , Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067
-
[12]
Feng Liang , Desheng Li , Yuting Jiang , Jiaxin Dong , Dongcheng Liu , Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009
-
[13]
Cuicui Yang , Bo Shang , Xiaohua Chen , Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066
-
[14]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[15]
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
-
[16]
Cheng Rong , Jiang Jiang , Xinyu Zheng . Constructivism and Deconstructivism in General Chemistry Teaching: Taking the Teaching of Colloidal Solutions as an Example. University Chemistry, 2024, 39(2): 292-297. doi: 10.3866/PKU.DXHX202308035
-
[17]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[18]
Jia Huo , Jia Li , Yongjun Li , Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075
-
[19]
Zhiyuan TONG , Ziyuan LI , Ke ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238
-
[20]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[1]
Metrics
- PDF Downloads(963)
- Abstract views(2522)
- HTML views(2)