Citation: XUE Rong, YAN Jing-Wang, TIAN Ying, YI Bao-Lian. Lanthanum Doped Manganese Dioxide/Carbon Nanotube Composite Electrodes for Electrochemical Supercapacitors[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2340-2346. doi: 10.3866/PKU.WHXB20111002 shu

Lanthanum Doped Manganese Dioxide/Carbon Nanotube Composite Electrodes for Electrochemical Supercapacitors

  • Received Date: 24 February 2011
    Available Online: 15 August 2011

    Fund Project:

  • Although higher specific capacitances have been achieved for manganese dioxide/multi-walled carbon nanotubes (MnO2/MWCNTs), the low conductivity of MnO2 is still the main obstacle in increasing its loading or film thickness. Another problem is that the cycling stability of MnO2/MWCNTs is much lower than that of activated carbon electrodes. Therefore, this new type of electrode material is still limited in application until now. In this paper, lanthanum doped MnO2/MWCNTs composites were prepared by an in situ redox method. The surface morphology and phase structure of the as-prepared samples were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometry. The electrochemical properties were investigated by cyclic voltammetry (CV), galvanostatic charge/discharge, and electrochemical impedance spectroscopy (EIS). The La-doped MnO2 could be formed on the MWCNTs by the reduction of MnO4-. The resistance of the composite electrodes decreased because La doping increases the number of imperfections in the MnO2 lattice, which improves the electrical conductivity and the electrochemical activity of the electrode. La doping is, therefore, an effective way to overcome the intrinsic low electric conductivity of MnO2, which facilitates an increase in the loading or the film thickness of MnO2 without increasing electrode resistance. The major effect of La doping is a significant improvement in the charge/discharge cycling performance of a symmetric electrochemical supercapacitor with electrodes composed of MnO2/ MWCNTs. The specific capacitance of the composite electrodes was improved by La doping.
  • 加载中
    1. [1]

      (1) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum Publishers: New York, 1999.

    2. [2]

      (2) Burke, A. Electrochim. Acta 2007, 53, 1083.  

    3. [3]

      (3) Conway, B. E.; Pell,W. G. J. Solid State Electrochem. 2003, 7, 637.  

    4. [4]

      (4) Qu, D. Y.; Shi, H. J. Power Sources 1998, 74, 99.  

    5. [5]

      (5) Arabale, G.;Wagh, D.; Kulkarni, M.; Mulla, I. S.; Vernekar, S. P.; Vijayamohanan, K.; Rao, A. M. Chem. Phys. Lett. 2003, 376, 207.  

    6. [6]

      (6) Sharma, R. K.; Karakoti, A.; Seal, S.; Zhai, L. J. Power Sources 2010, 195, 1256.  

    7. [7]

      (7) Zein, S. H. S.; Yeoh, L. C.; Chai, S. P.; Mohamed, A. R.; Mahayuddin, M. E. M. J Mater. Process Technol. 2007, 190, 402.  

    8. [8]

      (8) Toupin, M.; Brousse, T.; Bélanger, D. Chem. Mater. 2004, 16, 3184.  

    9. [9]

      (9) Subramanian, V.; Zhu, H.W.;Wei, B. Q. Electrochem. Commun. 2006, 8, 827.  

    10. [10]

      (10) Shao, G. J.; Yao, Y.; Zhang, S. P.; He, P. Rare Metals 2009, 28, 132.  

    11. [11]

      (11) Man?i?, D.; Paunovi?, V.; Vijatovi?, M.; Stojanovi?, B.; ?ivkovi?, L. Science of Sintering 2008, 40, 283.  

    12. [12]

      (12) Ma, S. B.; Ahn, K. Y.; Lee, E. S.; Oh, K. H.; Kim, K. B. Carbon 2007, 45, 375.  

    13. [13]

      (13) Athou?l, L.; Moser, F.; Dugas, R.; Crosnier, O.; Bélanger, D.; Brousse, T. J. Phys. Chem. C 2008, 112, 7270.  

    14. [14]

      (14) Jin, X.; Zhou,W.; Zhang, S.; Chen, G. Z. Small 2007, 3, 1513.  

    15. [15]

      (15) Kovtyukhova, N. I.; Mallouk, T. E.; Pan, L.; Dickey, E. C. J. Am. Chem. Soc. 2003, 125, 9761.  

    16. [16]

      (16) Holzinger, M.; Vostrowsky, O.; Hirsch, A.; Hennrich, F.; Kappes, M.;Weiss, R.; Jellen, F. Angew Chem. Int. Edit. 2001, 40, 4002.  

    17. [17]

      (17) Kim, U. J.; Furtado, C. A.; Liu, X. M.; Chen, G. G.; Eklund, P. C. J. Am. Chem. Soc. 2005, 127, 15437.  

    18. [18]

      (18) Kuznetsova, A.; Mawhinney, D. B.; Naumenko, V.; Yates, J. T.; Liu, J.; Smalley, R. E. Chem. Phys. Lett. 2000, 321, 292.  

    19. [19]

      (19) Lu, K. L.; La , R. M.; Chen, Y. K.; Green, M. L. H.; Harris, P. J. F.; Tsang, S. C. Carbon 1996, 34, 814.  

    20. [20]

      (20) Xie, X. F.; Gao, L. Carbon 2007, 45, 2365.  

    21. [21]

      (21) White, A. M.; Slade, R. C. T. Electrochim. Acta 2004, 49, 861.  

    22. [22]

      (22) Masarapu, C.; Zeng, H. F.; Hung, K. H.;Wei, B. Q. ACS Nano 2009, 3, 2199.  

    23. [23]

      (23) Hu, C. C.;Wang, C. C. J. Electrochem. Soc. 2003, 150, A1079.

    24. [24]

      (24) Wu, M. S.; Chiang, P. C. J. Electrochemical and Solid State Letters 2004, 7, A123.

    25. [25]

      (25) Yan, J.; Fan, Z. J.;Wei, T.; Cheng, J.; Shao, B.;Wang, K.; Song, L. P.; Zhang, M. L. J. Power Sources 2009, 194, 1202.  

    26. [26]

      (26) Li, Y.; Xie, H. Q.;Wang, J. F.; Chen, L. F. Mater. Lett 2011, 65, 403.  

    27. [27]

      (27) Raymundo-Piñero, E.; Khomenko, V.; Frackowiak, E.; Béguin, F. J. Electrochem. Soc. 2005, 152, A229.

    28. [28]

      (28) Fang, D. L.;Wu, B. C.; Mao, A. Q.; Yan, Y.; Zheng, C. H. J. Alloy. Compd. 2010, 507, 526.  

    29. [29]

      (29) Wu, M.; Snook, G. A.; Chen, G. Z.; Fray, D. J. Electrochem. Commun. 2004, 6, 499.  

    30. [30]

      (30) Pourbaix, M. Atlas of electrochemical equilibria in aqueous solutions; National Association of Corrosion Engineers, 1974.

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    10. [10]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    18. [18]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

Metrics
  • PDF Downloads(1414)
  • Abstract views(2798)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return