Citation: JIN Yi, WANG Yue, BIAN Fu-Yong, SHI Qiang, GE Mao-Fa, WANG Shu, ZHANG Xing-Kang, XU Si-Chuan. Three-Dimensional Structure of Dopamine 3-Subtype Receptor with the Active Site Residues for the Binding of Dopamine[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2432-2446. doi: 10.3866/PKU.WHXB20111001 shu

Three-Dimensional Structure of Dopamine 3-Subtype Receptor with the Active Site Residues for the Binding of Dopamine

  • Received Date: 26 May 2011
    Available Online: 15 August 2011

    Fund Project: 中国科学院百人计划, 云南省人才基金(2006PY01-29) (2006PY01-29)国家自然科学基金(21163024)资助项目 (21163024)

  • The dopamine 3-subtype receptor (D3R) is a promising therapeutic target for the development of new drugs. Using rhodopsin as a template protein, we report homology modeling of a complete D3R structure including dopamine (Dop) in an environment of a 1-palmitoyl-2-oleoylsn-glycero-3-phospha-tidylcholine (POPC) explicit lipid bilayer and water. A 300 ns molecular dynamics (MD) simulation was performed to obtain a stable three-dimensional structure for D3R (2B08-D3R) based on five residues (Asp117, His272, Phe269, Ser208, and Thr276), and these were validated as active sites for the binding of dopamine to the D3R protein by the binding energies (Eb) calculated using MP2/6-31G(d,p) between Dop and each of the residues within 0.6 nm of Dop. The five key residues are locating on TM3, TM5, and TM6 within the D3R helical regions, respectively, forming an active pocket for the binding of Dop to the D3R protein. The phenyl plane of Dop is parallel to the cylinder space formed by the TM2-TM7 helical regions when it bonds non-covalently to the D3R protein. The value of Eb between the Dop and D3R protein is -97.8 kJ·mol-1, which explains why dopamine is easily assimilated into the D3R protein and departs from it as a nerve material and a signal transducer. Using the crystal protein structure of mutated D3R (code: 3PBL) we built another D3R protein structure including dopamine (designated Dop-3PBL-D3R) and identified five residues (Asp83, His272, Phe269, Phe268, and Trp265) as the active sites for the binding of Dop. The phenyl plane of Dop is also parallel to the cylinder space that is formed by the TM2-TM7 helical regions when it binds non-covalently to the Dop-3PBL-D3R protein with an Eb of -80.5 kJ·mol-1 between them.
  • 加载中
    1. [1]

      (1) Li, F.; Shu, S. Y.; Bao, X. M. Chin. J. Neurosci. 2003, 19, 405.

    2. [2]

      [李凡, 舒斯云, 包新民. 中国神经科学杂志, 2003, 19, 405.]

    3. [3]

      (2) Carlsson, A.;Waters, N.;Waters, S.; Carlsson, M. L. Brain Research Reviews 2000, 31, 342.  

    4. [4]

      (3) Suri, R. E.; Bargas, J.; Arbib, M. A. Neuroscience 2001, 103, 65.  

    5. [5]

      (4) Salum, C.; Roque, S. A.; Pickering, A. Neurocomputing 1999, 26, 845.  

    6. [6]

      (5) Kebabian, J.W.; Calne, D. B. Nature 1979, 277, 93.  

    7. [7]

      (6) Bunzow, J. R.; Van Tol, H. H. M.; Grandy, D. K.; Albert, P.; Salon, M.; Christie, M.; Machida, C. A.; Neve, K. A.; Civelli, O. Nature 1988, 336, 783.  

    8. [8]

      (7) Dearry, A.; Gingrich, J. A.; Falardeau, P. Fremeau, R. T., Jr.; Bates, M. D.; Caron, M. G. Nature 1990, 347, 72.  

    9. [9]

      (8) Socoloff, P.; Giros, B.; Martres, M. P.; Bouthenet, M. L.; Schwaltz, J. C. Nature 1990, 347, 146.  

    10. [10]

      (9) Van Tol, H. H. M.; Bunzow, J. R.; Guan, H. C.; Sunahara, R. K.; Seeman, P.; Niznik, H. B.; Civelli, O. Nature 1991, 350, 610.  

    11. [11]

      (10) Sunahara, R. K.; Guan, H. C.; O? Dowd, B. F.; Seeman, P.; Laurier, L. G.; Ng, G.; George, S. R.; Torchia, J.; Van Tol, H. H. M.; Niznik, H. B. Nature 1991, 350, 614.  

    12. [12]

      (11) Xu, M.; Koeltzo, T. E.; Santia , G. T.; Moratalla, R.; Cooper, D. C.; Hu, X.T.; White, N. M.; Graybiel, A. M.; White, F. J.; Tonegawa, S. Neuron 1997, 19, 837.  

    13. [13]

      (12) Bontempi, B.; Sharp, F. R. J. Neurosci. 1997, 17, 8596.

    14. [14]

      (13) Plante-Bordeneuve, V.; Taussig, D.; Thomas, F.; Said, G.;Wood, N.W.; Marsden, C. D.; Harding, A. E. Neurology 1997, 48, 1589.

    15. [15]

      (14) Sokoloff, P.; Martres, M. P.; Giros, B.; Bouthenet, M. L.; Schwartz, J. C. Biochem. Pharmacol. 1992, 43, 659.  

    16. [16]

      (15) Gurevich, E. V.; Bordelon, Y.; Shapiro, R. M.; Arnold, S. E.; Gur, R. E.; Joyce, J. N. Arch. Gen. Psychiatry 1997, 54, 225.

    17. [17]

      (16) Caine, S. B.; Koob, G. F. Science 1993, 260, 1814.  

    18. [18]

      (17) He, Y.; Jin, G. Z. Chinese Bulletin of Life Sciences 2005, 17, 170.

    19. [19]

      [和友, 金国章. 生命科学, 2005, 17, 170.]

    20. [20]

      (18) Erickson, J. A.; Jalaie, M.; Robertson, D. H.; Lewis, R. A.; Vieth, M. J. Med. Chem. 2004, 47, 45.  

    21. [21]

      (19) Homan, E. J.;Wikstrom, H. V.; Grol, C. J. Bioorg. Med. Chem. 1999, 7, 1805.  

    22. [22]

      (20) Teeter, M. M.; Froimowitz, M.; Stec, B.; DuRand, C. J. J. Med. Chem. 1994, 37, 2874.  

    23. [23]

      (21) Malmberg, A.; Nordvall, G.; Johansson, A. M.; Mohell, N.; Hacksell, U. Mol. Pharmacol. 1994, 46, 299.

    24. [24]

      (22) Trumpp-Kallmeyer, S.; Hoflack, J.; Bruinvels, A.; Hibert, M. J. Med. Chem. 1992, 35, 3448.  

    25. [25]

      (23) Livingstone, C. D.; Strange, P. G.; Naylor, L. H. Biochem. J. 1992, 287, 277.

    26. [26]

      (24) Dahl, S. G.; Edvardsen, O.; Sylte, I. Pro. Natl. Acad. Sci. U. S. A. 1991, 88, 8111.  

    27. [27]

      (25) Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B. A.; Trong, I. L.; Teller, D. C.; Okada, T.; Stenkamp, R. E.; Yamamoto, M.; Miyano, M. Science 2000, 289, 739.  

    28. [28]

      (26) Varady, J.;Wu, X. H.; Fang, X. L.; Min, J.; Hu, Z.; Levant, B.; Wang, S. J. Med. Chem. 2003, 46, 4377.  

    29. [29]

      (27) Okada, T.; Sugihara, M.; Bondar, A. N.; Elstner, M.; Entel, P.; Buss, V. J. Mol. Biol. 2004, 342, 571.  

    30. [30]

      (28) White, S. H. Protein Science 2004, 13, 1948.  

    31. [31]

      (29) Varady, J.;Wang, S. J. Med. Chem. 2006, 49, 4470.  

    32. [32]

      (30) John, M. Curr. Opin. Biotech. 1999, 10, 583.

    33. [33]

      (31) Martí-Renom, M. A.; Stuart, A. C.; Fiser, A.; Sanchez, R.; Melo, F.; Sali, A. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 291.  

    34. [34]

      (32) Zou, X. Q.; Sun, Y. X.; Kuntz, I. D. J. Am. Chem. Soc. 1999, 121, 8033.  

    35. [35]

      (33) SYBYL Molecular Modeling System, Version 7.2. Tripos, Inc.: St. Louis, MO.

    36. [36]

      (34) Al-Lazikani, B.; Jung, J.; Xiang, Z.; Hong, B. Curr. Opin. Chem. Biol. 2001, 5, 51.  

    37. [37]

      (35) Weiser, J.; Shenkin, P. S.; Still,W. C. J. Comput. Chem. 1999, 20, 217.

    38. [38]

      (36) Clark, M.; Cramer, R. D. III; Van Opdenbosh, N. Comput. Chem. 1989, 10, 982.  

    39. [39]

      (37) Morris, J. H.; Huang, C. C.; Babbitt, P. C.; Ferrin, T. E. Bioinformatics 2007, 23, 2345.  

    40. [40]

      (38) ddard, T. D.; Huang, C. C.; Ferrin, T. E. Structure 2005, 13, 473.  

    41. [41]

      (39) Hoff, B.; Strandberg, E.; Ulrich, A. S.; Tieleman, D. P.; Posten, C. Biophys. J. 2005, 88, 1818.  

    42. [42]

      (40) Van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. J. Comp. Chem. 2005, 26, 1701.  

    43. [43]

      (41) Lindahl, E.; Hess, B.; van der Spoel, D. J. Mol. Mod. 2001, 7, 306.

    44. [44]

      (42) Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. Comp. Phys. Comm. 1995, 91, 43.  

    45. [45]

      (43) Frisch, M. J. et al. Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT, 2004.

    46. [46]

      (44) Cambria, M. T.; Di Marino, D.; Falconi, M.; Garavaglia, S.; Cambria, A. J. Biomol. Struct. Dyn. 2010, 27, 501.

    47. [47]

      (45) Kahlon, A. K.; Roy, S.; Sharma, A. (2010) J. Biomol. Struct. Dyn. 2010, 28, 201.

    48. [48]

      (46) Tuccinardi, T.; Botta, M.; Giordano, A.; Martinelli, A. J. Chem. Inf. Model 2010, 50, 1432.  

    49. [49]

      (47) Li, Y.; Shen, J.; Sun, X.; Li,W.; Liu, G.; Tang, Y. J. Chem. Inf. Model 2010, 50, 1134.  

    50. [50]

      (48) Pettersen, E. F.; ddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605.  

    51. [51]

      (49) Xu, S. C.; Deng, S.; Ma, L.; Shi, Q.; Ge, M.; Zhang, X. Acta Phys.-Chem. Sin. 2009, 25, 1290.

    52. [52]

      (50) Boys, S. F.; Bernardi, F. Mole. Phys. 1970, 19, 553.  

    53. [53]

      (51) Baldwin, J. M.; Schertler, G. F. X.; Unger, V. M. J. Mol. Biol. 1997, 272, 144.  

    54. [54]

      (52) Van Leeuwen, D. H.; Eisenstein, J.; O?Malley, K.; MacKenzie, R. G. Mol. Pharmacol. 1995, 48, 344.

    55. [55]

      (53) Filteau, F.; Veilleux, F.; Levesque, D. FEBS Lett. 1999, 447, 251.  

    56. [56]

      (54) Efremov, R. G.; Nolde, D. E.; Ver ten, G.; Arseniev, A. S. Biophys. J. 1999, 76, 2460.  

    57. [57]

      (55) Botelho, A. V.; Gibson, N. J.; Thurmond, R. L.;Wang, Y.; Brown, M. F. Biochemistry 2002, 41, 6354.  

    58. [58]

      (56) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren,W. F.; Hermans, J.; Pullman, B. J. Am. Chem. Soc. 2001, 123, 8638.  

    59. [59]

      (57) Miyamoto, S.; Kollman, P. A. J. Comput. Chem. 1992, 13, 952.  

    60. [60]

      (58) Faver, J. C.; Benson, M. L.; He, X.; Roberts, B. P.;Wang, B.; Marshall, M. S.; Kennedy, M. R.; Sherrill, C. D.; Merz, Jr K. M. J. Chem. Theory Comput. 2011, 7, 790.  

    61. [61]

      (59) Gilson, M. K.; Zhou, H. X. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 21.  

    62. [62]

      (60) Leach, A. R.; Shoichet, B. K.; Peishoff, C. E. J. Med. Chem. 2006, 49, 5851.  

    63. [63]

      (61) Merz, K. M. J. Chem. Theory Comput. 2010, 6, 1769.  

    64. [64]

      (62) Dill, K. A. J. Biol. Chem. 1997, 272, 701.

    65. [65]

      (63) Hayik, S. A.; Dunbrack, Jr R.; Merz, Jr K. M. J. Chem. Theory Comput. 2010, 6, 3079.  

    66. [66]

      (64) Lyne, P. D. Drug Discovery Today 2002, 7, 1047.  

    67. [67]

      (65) Jorgensen,W. L. Science 2004, 303, 1813.  

    68. [68]

      (66) Abel, R.; Young, T.; Farid, R.; Berne, B. J.; Friesner, R. A. J. Am. Chem. Soc. 2008, 130, 2817.  

    69. [69]

      (67) Moitessier, N.; Henry, C.; Maigret, B.; Chapleur, Y. J. Med. Chem. 2004, 47, 4178.  

    70. [70]

      (68) Sutherland, J. J.; Nandigam, R. K.; Erickson, J. A.; Vieth, M. J. Chem. Inf. Model 2007, 47, 2293.  

    71. [71]

      (69) Kitchen, D. B.; Decornez. H.; Furr, J. R.; Bajorath, J. Nat. Rev. Drug Discovery 2004, 3, 935.  

    72. [72]

      (70) Lengauer, T.; Lemmen, C.; Rarey, M.; Zimmermann, M. Drug Discovery Today 2004, 9, 27.  

    73. [73]

      (71) Zhou, T.; Caflisch, A. ChemMedChem 2010, 5, 1007.  

    74. [74]

      (72) Raha, K.; Peters, M. B.;Wang, B.; Yu, N.;Wollacott, A. M.; Westerhoff, L. M.; Merz, K. M. Drug Discovery Today 2007, 12, 725.  

    75. [75]

      (73) Peters, M. B.; Raha, K.; Merz, K. M. Curr. Opin. Drug Discovery Dev. 2006, 9, 370.

    76. [76]

      (74) Raha, K.; Merz, K. M. J. Med. Chem. 2005, 48, 4558.  

    77. [77]

      (75) Fukuzawa, K.; Kitaura, K.; Uebayasi, M.; Nakata, K.; Kaminuma, T.; Nakano, T. J. Comput. Chem. 2005, 26, 1.  

    78. [78]

      (76) Clark, R. D.; Strizhev, A.; Leonard, J. M.; Blake, J. F.; Matthew, J. B. J. Mol. Graphics Model 2002, 20, 281.  

    79. [79]

      (77) Bohm, H. J. J. Comput. Aided Mol. Des. 1998, 12, 309.  

    80. [80]

      (78) Wang, R.; Lu, Y.;Wang, S. J. Med. Chem. 2003, 46, 2287.  

    81. [81]

      (79) Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C.W.; Taylor, R. D. Proteins: Struct. Funct. Genet. 2003, 52, 609.  

    82. [82]

      (80) 70 Trott, O.; Olson, A. J. J. Comput. Chem. 2009, 31, 455.

    83. [83]

      (81) Xu, S. C.; Ma, L. Y.; Bian, F. Y.; Shi, Q.; Ge, M. F.; Zhang, X. K. Acta Phys. -Chim. Sin. 2009, 25, 2312.

    84. [84]

      [徐四川, 马丽英, 卡富永, 史强, 葛茂发, 张光康. 物理化学学报, 2009, 25, 2312.]

    85. [85]

      (82) Wang, Y.; Bian, F.; Deng, S.; Shi, Q.; Ge, M.;Wang, S.; Zhang, X.; Xu, S. C. J. Biomol. Struct. Dynamics 2011, 28, 881.

    86. [86]

      (83) Xu, S. C.; Chi, S.; Jin, Y.; Shi, Q.; Ge, M.;Wang, S.; Zhang, X. J. Mol. Model 2011, 17, in press.

    87. [87]

      (84) Xu, S. C.; Deng, S. R.; Ma, L. Y.; Shi, Q.; Zhang, X. K.; Ge, M. F. Science in China , Series G: Physics , Mechanics , Astronomy 2011, 54, 156.  

    88. [88]

      (85) Jiang, Y.; Alcaraz, A. A.; Chen, J. M.; Kobayashi, H.; Lu, Y. J.; Snyder, J. P. J. Med. Chem. 2006, 49, 1891.  

    89. [89]

      (86) Chen, E. Y. T.; Liu,W.; Zhao, Q.; Katritch, V.; Han, G.W.; Hanson, M. A.; Shi, L.; Newman, A. H.; Javitch, J. A.; Cherezov, V.; Stevens, R. C. Science 2010, 330, 1091.  

    90. [90]

      (87) Guex, N.; Peitsch, M. C. Electrophoresis 1997, 18, 2714.

  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    11. [11]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    12. [12]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    16. [16]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    17. [17]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    18. [18]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    19. [19]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(1329)
  • Abstract views(2963)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return