Citation: CUI Bai, LIN Hong, ZHAO Xiao-Chong, LI Jian-Bao, LI Wen-Di. Visible Light Induced Photocatalytic Activity of ZnCo2O4 Nanoparticles[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2411-2415. doi: 10.3866/PKU.WHXB20110937 shu

Visible Light Induced Photocatalytic Activity of ZnCo2O4 Nanoparticles

  • Received Date: 25 April 2011
    Available Online: 8 August 2011

    Fund Project: 国家自然科学基金(50572051, 50672041) (50572051, 50672041) 国家高技术研究发展计划项目(863) (2006AA03Z218) (863) (2006AA03Z218)国家重点基础研究发展规划项目(973)(2007CB607504)资助 (973)(2007CB607504)

  • ZnCo2O4 nanoparticles were synthesized by a co-precipitation decomposition method and their optical and photocatalytic properties were investigated. Their crystal structure and microstructures were characterized using X-ray diffraction (XRD), thermogravimetry (TG)/differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The ZnCo2O4 nanocrystallites obtained were single-phase with an average size of 10-20 nm. The optical bandgap energies of the nanoparticles were estimated to be 3.39 and 2.09 eV from the UV-Vis absorption spectrum. The ZnCo2O4 nanoparticles exhibited high photocatalytic activity for the degradation of methylene blue dye solution under visible light irradiation (λ>420 nm). The photocatalytic activity of the ZnCo2O4 nanoparticles is attributed to their ability to absorb bandgap photons under UV and visible light as well as their nanoscale particle size. Based on these experimental results, a possible band structure of ZnCo2O4 is proposed.
  • 加载中
    1. [1]

      (1) Cui, B.; Lin, H.; Li, J. B.; Li, X.; Yang, J.; Tao, J. Adv. Funct. Mater. 2008, 18, 1440.  

    2. [2]

      (2) Cui, B.; Lin, H.; Liu, Y.; Li, J.; Sun, P.; Zhao, X.; Liu, C. J. Phys. Chem. C 2009, 113, 14083.  

    3. [3]

      (3) Tang, J.; Zou, Z.; Ye, J. Chem. Mater. 2004, 16, 1644.  

    4. [4]

      (4) Chi, B.; Li, J.; Yang, X.; Lin, H.;Wang, N. Electrochim. Acta 2005, 50, 2059.  

    5. [5]

      (5) Takada, T.; Kasahara, S.; Omata, K.; Yamada, M. Nippon Kagaku Kaishi 1994, 9, 793.

    6. [6]

      (6) Sharma, Y.; Sharma, N.; Rao, G. V. S.; Chowdari, B. V. R. Adv. Funct. Mater. 2007, 17, 2855.  

    7. [7]

      (7) Ai, C.; Yin, M.;Wang, C.; Sun, J. J. Mater. Sci. 2004, 39, 1077.  

    8. [8]

      (8) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.  

    9. [9]

      (9) Li, X.; Li, F. J. Phys. Chem. B 1999, 103, 4862.  

    10. [10]

      (10) Su, Y. L.; Li, Y.; Du, Y. X.; Lei, L. C. Acta Phys. -Chim. Sin. 2011, 27, 939.

    11. [11]

      [苏雅玲, 李轶, 杜瑛珣, 雷乐成. 物理化学学报, 2011, 27, 939.]

    12. [12]

      (11) Belhekar, A. A.; Awate, S. V.; Anand, R. Catal. Commun. 2002, 3, 453.  

    13. [13]

      (12) Min, S. X.;Wang, F.; Zhang, Z. M.; Han, Y. Q.; Feng, L. Acta Phys. -Chim. Sin. 2009, 25, 1303.

    14. [14]

      [敏世雄, 王芳, 张振敏, 韩玉琦, 冯雷. 物理化学学报, 2009, 25, 1303.]

    15. [15]

      (13) Tang, J.; Zou, Z.; Yin, J.; Ye, J. Chem. Phys. Lett. 2003, 382, 175.  

    16. [16]

      (14) Wang, D; Zou, Z.; Ye, J. Chem. Phys. Lett. 2003, 373, 191.  

    17. [17]

      (15) Valenzuela, M. A.; Bosch, P.; Jimenez-Becerrill, J.; Quiroz, O.; Paez, A. I. J. Photochem. Photobiol. A 2002, 148, 177.  

    18. [18]

      (16) Bessekhouad, Y.; Trari, M. Int. J. Hydrog. Energy 2002, 27, 357.  

    19. [19]

      (17) Wei, X.; Chen, D.; Tang,W. Mater. Chem. Phys. 2007, 103, 54.  

    20. [20]

      (18) Shi, J.; Cui, H.; Liang, Z.; Lu, X.; Tong, Y.; Su, C.; Liu, H. Energy Environ. Sci. 2011, 4, 466.  

    21. [21]

      (19) Chi, B.; Zhao, L.; Jin. T. J. Phys. Chem. C 2007, 111, 6189.  

    22. [22]

      (20) Bazuev, G. V.; Gyrdasova, O. I.; Gri rov, I. G.; Koryakova, O. V. Inorg. Mater. 2005, 41, 288.  

    23. [23]

      (21) Wang, X.; Chen, X. Y.; Gao, L. S.; Zheng, H. G.; Zhang, Z. D.; Qian, Y. T. J. Phys. Chem. B 2004, 108, 16401.  

    24. [24]

      (22) Kubelka, P.; Munk, F. Z. Tech. Phys. (Leipzig) 1931, 12, 593.

    25. [25]

      (23) Radaelli, P. G. New J. Phys. 2005, 7, 53.  

    26. [26]

      (24) Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature 2001, 414, 625.  

    27. [27]

      (25) Xu, P. C.; Liu, Y.;Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261.

    28. [28]

      [许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.]

    29. [29]

      (26) Hagfeldt, A.; Gr?tzel, M. Chem. Rev. 1995, 95, 49.  

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    3. [3]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    13. [13]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    14. [14]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    15. [15]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(2046)
  • Abstract views(3798)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return