Citation: LI Gan, LUO Wen-Hua, CHEN Hu-Chi. Adsorption and Dissociation of CO2on the α-U(001) Surface[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2319-2325. doi: 10.3866/PKU.WHXB20110936 shu

Adsorption and Dissociation of CO2on the α-U(001) Surface

  • Received Date: 28 April 2011
    Available Online: 2 August 2011

    Fund Project: 国防科技重点实验室基金(9140C6601010901) (9140C6601010901)中国工程物理研究院科学技术基金(2008A0301013)资助项目 (2008A0301013)

  • The adsorption and dissociation of CO2 on the α-U(001) surface at 0.25 monolayer (ML) coverage was studied using density functional theory (DFT) within the generalized gradient approximation (GGA). Stable structures and corresponding energies of CO2 adsorbed on the α-U(001) surface were obtained while the transition state and corresponding energy barrier for CO2 dissociation was determined. We discussed the interaction mechanism between CO2 and the α-U(001) surface. We found that CO2 strongly chemisorbed onto the α-U(001) surface in a multi-bonding manner with adsorption energies of 1.24-1.67 eV and the degree of C―O bond activation depended on the degree of electron transfer from surface to the adsorbed CO. The interaction between the U atoms and the CO2 molecules mainly comes from the population of the CO2 2πu lowest unoccupied molecular orbital (LUMO) by U electrons with CO2 2πu/1πg/3σu-U 6d orbital hybridization. The dissociative adsorption energies for the CO2 adsorbed on the hollow1 and hollow2 sites with three C―U bonds and six O―U bonds (H1-C3O6 and H2-C3O6 ) are 3.15 and 3.13 eV, respectively. The corresponding dissociation barriers are 0.26 and 0.36 eV, which indicates that the dissociation of adsorbed CO2 into CO and O occurs easily.
  • 加载中
    1. [1]

      (1) McLean,W.; Colmenares, C. A.; Smith, R. L. Phys. Rev. B 1982, 25, 8.  

    2. [2]

      (2) uder, T.; Colmenares, C.; Naegele, J. R.; Verbist, J. Surf. Sci. 1989, 235, 280.

    3. [3]

      (3) Huda, M. N.; Ray, A. K. Int. J. Quantum Chem. 2004, 102, 98.

    4. [4]

      (4) Dholabhai, P. P.; Ray, A. K. J. Alloy. Compd. 2007, 444, 356.  

    5. [5]

      (5) Nie, J. L.; Xiao, H. Y.; Zu, X. T.; Fei, G. J. Phys: Condens. Matter 2008, 20, 445001.  

    6. [6]

      (6) Senanayake, S. D.; Soon, A.; Kohlmeyer, A.; Sohnel, T.; Idriss, H. J. Vac. Sci. Technol. 2005, A23, 1078.

    7. [7]

      (7) Li, G.; Luo,W. H.; Chen, H. C. Acta Phys. -Chim. Sin. 2010, 26, 1378.

    8. [8]

      [李赣, 罗文华, 陈虎翅.物理化学学报, 2010, 26, 1378.

    9. [9]

      (8) Blanter, M. S.; Glazkov, V. P.; Somenkov, V. A. The Physics of Metal and Metallography 2006, 101, 153.  

    10. [10]

      (9) Hohenberg, P.; Kohn,W. Phys. Rev. B 1964, 136, 864.  

    11. [11]

      (10) Kohn,W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133.  

    12. [12]

      (11) Delley, B. J. Chem. Phys. 2000, 113, 7756.  

    13. [13]

      (12) Delley, B. Int. J. Quant. Chem B 1998, 69, 423.  

    14. [14]

      (13) Perdew, J. P.;Wang, Y. Phys. Rev. B 1992, 45, 13244.  

    15. [15]

      (14) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.  

    16. [16]

      (15) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condens. Matter 2002, 14, 2717.  

    17. [17]

      (16) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892.  

    18. [18]

      (17) Bell, S.; Crighton, J. S. J. Chem. Phys. 1984, 80, 2464.  

    19. [19]

      (18) Fischer, S; Karplus, M. Chem. Phys. Lett. 1992, 194, 252.  

    20. [20]

      (19) Barett, C. S.; Mueller, M. H.; Hittermann, R. L. Phys. Rev. 1963, 129, 6251.

    21. [21]

      (20) S?derlind, P. Phys. Rev. B 2002, 66, 085113.  

    22. [22]

      (21) Vitos, L.; Xiao, H. Y.; Gao, F.; Zu, X. T. J. Alloy. Compd. 2008, 476, 675.

    23. [23]

      (22) Lide, D. R. CRC Handbook of Chemistry and Physics; CRC Press:Boca Raton, 2003.

    24. [24]

      (23) Freund, H. J.; Messmer, R. P. Surf. Sci. 1986, 172, 1.  

    25. [25]

      (24) Storms, E. K.; Haber, A. J. J. Nucl. Mater. 1967, 23, 19.  

    26. [26]

      (25) Wyckoff, R.W. G. Crystal Structures 1; Interscience Press:New York, 1963.

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    4. [4]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    5. [5]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    8. [8]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    9. [9]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    10. [10]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    11. [11]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    12. [12]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    13. [13]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    20. [20]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

Metrics
  • PDF Downloads(1260)
  • Abstract views(3544)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return