Citation: HE Jie, FAN Yi-Ning. Dispersion States and Brønsted Acidity Feature of Nb2O5on t-ZrO2[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2416-2420. doi: 10.3866/PKU.WHXB20110934 shu

Dispersion States and Brønsted Acidity Feature of Nb2O5on t-ZrO2

  • Received Date: 16 May 2011
    Available Online: 29 July 2011

    Fund Project: 国家重点基础研究发展计划项目(G1999022400) (G1999022400)国家自然科学基金(21071004)资助 (21071004)

  • Nb2O5/t-ZrO2 catalysts with different loadings were prepared by aqueous solution impregnation using niobium oxalate as a precursor on tetra nal ZrO2 (t-ZrO2). The dispersion states with respect to niobia species on t-ZrO2 were characterized by powder X-ray diffraction (XRD), laser Raman spectroscopy (LRS), and UV visible diffuse reflectance spectroscopy (UV-Vis DRS). The catalytic activity was evaluated by the condensation reaction of iso-butene (IB) and iso-butyraldehyde (IBA) to 2,5-dimethyl-2,4-hexadiene (DMHD) and the Brønsted acidity was evaluated by the Fourier-transform infrared spectroscopy of pyridine adsorption (Py-IR). The results reveal that the dispersion capacity ΓNb of Nb2O5 on t-ZrO2, which was determined by XRD quantitative phase analysis, is almost identical to the value predicted by the "incorporated model". The results also show that the Brønsted acid sites are strongly related to the states of Nb2O5 on Nb2O5/t-ZrO2.
  • 加载中
    1. [1]

      (1) Lizuka, T.; Ogasawara, K.; Tanabe, K. Bull. Chem. Soc. Jpn. 1983, 56, 2927.  

    2. [2]

      (2) Tanabe, K. Cata. Today 2003, 78, 65.  

    3. [3]

      (3) Sumiya, S.; Oumi, Y.; Sadakane, M.; Sano, T. Appl. Catal. A: General 2009, 365, 261.  

    4. [4]

      (4 Nowak, I.; Ziolek, M. Chem. Rev. 1999, 99, 3603.

    5. [5]

      (5) Abdel-Rehim, M. A.; dos Santos, A. C. B.; Camorim, V. L. C.; Faro, A. D. Appl. Catal. A: General 2006, 305, 211.  

    6. [6]

      (6) Onfroy, J.; Clet, G.; Bukallah, S. B.; Visser, T.; Houalla, M. Appl. Catal. A: General 2006, 298, 80.  

    7. [7]

      (7) Onfroy, T.; Clet, G.; Bukallah, S. B.; Hercules, D. M.; Houalla, M. Catal. Lett. 2003, 89: 15.

    8. [8]

      (8) Takagaki, A.; Tagusagawa, C.; Hayashi, S.; Hara, M.; Domen, K. Energy Environ. Sci. 2010, 3, 82.  

    9. [9]

      (9) Wachs, I. E.; Jehng, J. M.; Deo, G.; Hu, H.; Arora, N. Catal. Today 1996, 28, 199.  

    10. [10]

      (10) Gao, X. T.;Wachs, I. E.;Wong, M. S.; Ying, J. Y. J. Catal. 2001, 203, 18.  

    11. [11]

      (11) Wachs, I. E.; Chen, Y.; Jehng, J. M.; Briand, L. E.; Tanaka, T. Catal. Today 2003, 78, 13.  

    12. [12]

      (12) Wachs, I. E. Catal. Today 1996, 27, 437.  

    13. [13]

      (13) Vuurman, M. A.;Wachs, I. E. J. Phys. Chem. 1992, 96, 5008.  

    14. [14]

      (14) He, J.; Fan, Y. N.; Qiu, J. H.; Chen, Y. Acta Chimica Sinica 2004, 62, 1311.

    15. [15]

      [何杰, 范以宁, 邱金恒, 陈懿. 化学学报, 2004, 62, 1311.]

    16. [16]

      (15) He, J.; Fan, Y. N. Acta Physico-Chimica Sinica 2010, 26, 679.

    17. [17]

      [何杰, 范以宁, 物理化学学报, 2010, 26, 679.]

    18. [18]

      (16) Jehng, J. M.;Wachs, I. E. Chem. Mater. 1991, 3, 100.  

    19. [19]

      (17) Roberta, B.; Francois, B. V. Phys. Chem. Chem. Phys. 2003, 5, 1457.

    20. [20]

      (18 Liu, Z.; Chen, Y. J. Catal. 1998, 177, 314.

    21. [21]

      (19) Morterra, C.; Cerrato, G.; Ferroni, L.; Montanaro, L. Mater. Chem. Phys. 1994, 37, 243.  

    22. [22]

      (20) Norman, G. J.; ulding, P. A.; Mcalpine, I. Catal. Today 1994, 20, 313.  

    23. [23]

      (21) He, J.; Fang, Y. N.; Qiu, J. H. Acta Petrolei Sinica(Petroleum Processing Scetion), 2006, 22, 18.

    24. [24]

      [何杰, 范以宁, 邱金恒, 石油学报(石油加工), 2006, 22, 18.]

    25. [25]

      (22) He, J.; Fan, Y. N.; Qiu, J. H.; Chen, Y. Chin. J. Inorg. Chem. 2004, 20 (7), 789.

    26. [26]

      [何杰, 范以宁, 邱金恒, 陈懿. 无机化学学报, 2004, 20 (7), 789.]

    27. [27]

      (23) Kataoka, T.; Dumesic, J. A. J. Catal. 1988, 112, 66.  

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    4. [4]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    5. [5]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    6. [6]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    9. [9]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    10. [10]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    15. [15]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    16. [16]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    17. [17]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    18. [18]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    19. [19]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    20. [20]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

Metrics
  • PDF Downloads(867)
  • Abstract views(6354)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return