Citation: GAO Wen-Chao, HUANG Tao, SHEN Yu-Dong, YU Ai-Shui. Phenolic Resin Coated Natural Graphite Oxide as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2129-2134. doi: 10.3866/PKU.WHXB20110933 shu

Phenolic Resin Coated Natural Graphite Oxide as an Anode Material for Lithium Ion Batteries

  • Received Date: 13 May 2011
    Available Online: 29 July 2011

    Fund Project: 上海市基础研究重点项目(10JC1401500) (10JC1401500)上海市分子催化和功能材料重点实验室(08DZ2270500)资助 (08DZ2270500)

  • A core-shell structure of the carbon-coated natural graphite oxide composite was successfully prepared. Natural graphite was initially oxidized using concentrated sulfuric acid and then carbon coated by the carbonization of phenolic resin at high temperature. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman techniques were used to characterize the morphology and structure of the natural graphite materials before and after oxidation and carbon coating by the pyrolysis of the phenolic resin. The results showed that the surface of the natural graphite particles became smoother and the surface defects were effectively modified after oxidation and carbon coating. The electrochemical test results showed that the electrochemical performance of the natural graphite improved significantly by oxidation with sulfuric acid and by carbon coating. When the covering amount of phenolic resin was 9% the modified natural graphite material gave the best electrochemical performance. Its initial discharge capacity was 434.0 mAh·g-1 and it remained 361.6 mAh· g-1 after 40 charge-discharge cycles. The discharge capacity of the untreated natural graphite was only 332.3 mAh·g-1. The modification approach that improved the capacity of the natural graphite effectively is of great significance for the application of natural graphite in lithium ion batteries.
  • 加载中
    1. [1]

      (1) Doyle, M.; Fuller, T. F.; Newman, J. J. Electrochem. Soc. 1993, 140, 1526.  

    2. [2]

      (2) Whittingham, M. S. Chem. Rev. 2004, 104 (10), 4271.

    3. [3]

      (3) Li, F. Q.; Lai, Y. Q.; Zhang, Z. A.; Gao, H. Q.; Yang, J. Acta Phys. -Chim. Sin. 2008, 24, 1302. [李凡群, 赖延清, 张治安, 高宏权, 杨娟. 物理化学学报, 2008, 24, 1302.]

    4. [4]

      (4) Zhao, H. P.; Ren, J. G.; He, X. M.; Li, J. J.; Jiang, C. Y.;Wan, C. R. Electrochim. Acta 2007, 52, 6006.  

    5. [5]

      (5) Yoshio, M.;Wang, H.; Fukuda, K.; Hara, Y.; Adachi, Y. J. Electrochem. Soc. 2000, 147, 1245.  

    6. [6]

      (6) Mao,W. Q.;Wang, J. M.; Xu, Z. H.; Niu, Z. X.; Zhang, J. Q. Electrochem. Commun. 2006, 8, 1326.  

    7. [7]

      (7) Menachem, C.;Wang, Y.; Floners, J.; Peled, E.; Greenbaum, S. G. J. Power Sources 1998, 76, 180.  

    8. [8]

      (8) Chen, J. T.; Zhou, H. H.; Chang,W. B.; Ci, Y. X. Acta Phys. -Chim. Sin. 2002, 18, 180. [陈继涛, 周恒辉, 常文保, 慈云祥. 物理化学学报, 2002, 18, 180.]

    9. [9]

      (9) Zhang, H. L.; Li, F.; Liu, C. J. Phys. Chem. C 2008, 112, 7767.  

    10. [10]

      (10) Choi,W. C.; Byun, D. J.; Lee, J. K.; Cho, B.W. Electrochim. Acta 2004, 50, 523.  

    11. [11]

      (11) Takamura, T. Bull. Chem. Soc. Jpn. 2002, 75, 21.  

    12. [12]

      (12) Tossici, R.; Berrettoni, M.; Rosolen, M. J. Eletrochem. Soc. 1997, 144, 186.  

    13. [13]

      (13) Tanaka, U.; Sogabe, T.; Saka shi, H.; Tojo, T. Carbon 2001, 39, 931.  

    14. [14]

      (14) Guo, K. K.; Pan, Q. M.; Fan, S. B. J. Power Sources 2002, 111, 350.  

    15. [15]

      (15) Yu, Z. H.;Wu, F. Battery Bimonthly 2003, 33, 131. [俞政洪, 吴锋. 电池, 2003, 33, 131.]

    16. [16]

      (16) Tuistra, F.; Koeing, J. L. J. Compos. Mater. 1970, 4, 492.

    17. [17]

      (17) Tsumura, T.; Katanosaka, A.; Souma, I. Solid State Ionics 2000, 135, 209.  

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    3. [3]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    4. [4]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    8. [8]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    14. [14]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    17. [17]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

Metrics
  • PDF Downloads(1662)
  • Abstract views(4809)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return