Citation: WANG Cai-Cai, LI Jian-Hui, SUN Yi-Fei, ZHU Xiao-Quan, HUANG Chuan-Jing, WENG Wei-Zheng, WAN Hui-Lin. Synthesis and Catalytic Performances of Mesoporous CeNiO Catalysts for the Oxidative Dehydrogenation of Propane to Propene[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2421-2426. doi: 10.3866/PKU.WHXB20110932 shu

Synthesis and Catalytic Performances of Mesoporous CeNiO Catalysts for the Oxidative Dehydrogenation of Propane to Propene

  • Received Date: 2 June 2011
    Available Online: 27 July 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2010CB732300) (973) (2010CB732300) 国家自然科学基金(21073148, 21033006, 20803060) (21073148, 21033006, 20803060)福建省自然科学基金(2009J01038)资助 (2009J01038)

  • Mesoporous NiO and CeNiO catalysts were prepared by homogeneous precipitation using sodium dodecyl sulfate (SDS) mixed with triblock copolymer P123 as a template and urea as a hydrolysiscontrolling agent. The prepared catalysts were evaluated for the oxidative dehydrogenation of propane (ODP) to propene and the structure and properties of the catalysts were characterized by N2 adsorptiondesorption, transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and H2 temperatureprogrammed reduction (H2-TPR). The results showed that between 400 and 450°C, the NiO and CeNiO catalysts exhibited similar catalytic behavior for the ODP reaction but at low temperatures (<400°C) the catalysts doped with Ce had higher catalytic activity. On NiO only a 3.1% propene yield was obtained at 325°C while the yield on 5CeNiO (nCe/nNi=5%) was as high as 12.2% at the same temperature. The results of N2 adsorption-desorption and TEM indicated that both the prepared NiO and CeNiO catalysts possessed a high surface area and a wormhole-like mesostructure. The H2-TPR results revealed that part of the oxygen species became more reducible because of the presence of Ce in CeNiO, which may be the main reason for the higher activities of the catalysts.
  • 加载中
    1. [1]

      (1) Cavani, F.; Ballarini, N.; Cericola, A. Catal. Today 2007, 127, 113.  

    2. [2]

      (2) Batiot, C.; Hodnett, B. Appl. Catal. A 1996, 137, 179.  

    3. [3]

      (3) Liu,W.; Lai, S. Y.; Dai, H.;Wang, S.; Sun, H.; Au, C. T. Catal. Today 2008, 131, 450.  

    4. [4]

      (4) Liu, Y. M.; Cao, Y.; Yi, N.; Feng,W. L.; Dai,W. L.; Yan, S. R.; He, H. Y.; Fan, K. N. J. Catal. 2004, 224, 417.  

    5. [5]

      (5) Liu, Y. M.; Cao, Y.; Zhu, K. K.; Yan, S. R.; Dai,W. L.; He, H. Y.; Fan, K. N. Chem. Commun. 2002, 2832.

    6. [6]

      (6) Liu, Y. M.; Feng,W. L.;Wang, L. C.; Cao, Y.; Dai,W. L.; He, H. Y.; Fan, K. N. Catal. Lett. 2006, 106, 145.  

    7. [7]

      (7) Chen, K.; Xie, S.; Bell, A. T.; Iglesia, E. J. Catal. 2001, 198, 232.  

    8. [8]

      (8) Chen, K.; Iglesia, E.; Bell, A. T. J. Phys. Chem. B 2001, 105, 646.  

    9. [9]

      (9) Chen, K.; Xie, S.; Bell, A. T.; Iglesia, E. J. Catal. 2000, 195, 244.  

    10. [10]

      (10) Samson, K.; Klisinska, A.; Gressel, I.; Grzybowska, B. React. Kinet. Catal. Lett. 2002, 77, 309.  

    11. [11]

      (11) Dury, F.; Gaigneaux, E.; Ruiz, P. Appl. Catal. A 2003, 242, 187.  

    12. [12]

      (12) Ducarme, V.; Martin, G. Catal. Lett. 1994, 23, 97.  

    13. [13]

      (13) Jalowiecki-Duhamel, L.; Ponchel, A.; Lamonier, C.; D?Huysser, A.; Barbaux, Y. Langmuir 2001, 17, 1511.  

    14. [14]

      (14) Boizumault-Moriceau, P.; Pennequin, A.; Grzybowska, B.; Barbaux, Y. Appl. Catal. A 2003, 245, 55.  

    15. [15]

      (15) Liu, Y. M.;Wang, L. C.; Chen, M.; Xu, J.; Cao, Y.; He, H. Y.; Fan, K. N. Catal. Lett. 2009, 130, 350.  

    16. [16]

      (16) He, Y.;Wu, Y.; Chen, T.;Weng,W.;Wan, H. Catal. Commun. 2006, 7, 268.  

    17. [17]

      (17) Wu, Y.; He, Y.; Chen, T.;Weng,W.;Wan, H. Appl. Surf. Sci. 2006, 252, 5220.  

    18. [18]

      (18) Li, J. H.;Wang, C. C.; Huang, C. J.;Weng,W. Z.;Wan, H. L. Catal. Lett. 2010, 137, 81.  

    19. [19]

      (19) Li, J. H.;Wang, C. C.; Huang, C. J.; Sun, Y. F.;Weng,W. Z.; Wan, H. L. Appl. Catal. A 2010, 382, 99.  

    20. [20]

      (20) Liu, Q.; Zhang,W. M.; Cui, Z. M.; Zhang, B.;Wan, L. J.; Song, W. G. Microporous Mesoporous Mat. 2007, 100, 233.  

    21. [21]

      (21) Liu, J.; Du, S.;Wei, L.; Liu, H.; Tian, Y.; Chen, Y. Catal. Lett. 2006, 60, 3601.

    22. [22]

      (22) Sominski, E.; Gedanken, A.; Perkas, N.; Buchkremer, H.; Menzler, N.; Zhang, L.; Yu, J. Microporous Mesoporous Mat. 2003, 60, 91.  

    23. [23]

      (23) Banerjee, S.; Santhanam, A.; Dhathathreyan, A.; Rao, P. M. Langmuir 2003, 19, 5522.  

    24. [24]

      (24) Zhao, D. D.; Xu, M.W.; Zhou,W. J.; Zhang, J.; Li, H. L. Electrochim. Acta 2008, 53, 2699.  

    25. [25]

      (25) Liu, Y.; Zhao,W.; Zhang, X. Electrochim. Acta 2008, 53, 3296.  

    26. [26]

      (26) Tan, Y.; Srinivasan, S.; Choi, K. S. J. Am. Chem. Soc. 2005, 127, 3596.  

    27. [27]

      (27) Liu, Y. M.; Cao, Y.; Dai,W. L.; Fan, K. N. Petrochemical Technology 2004, 33, 368.

    28. [28]

      [刘永梅, 曹勇, 戴维林, 范康年. 石油化工2004, 33, 368.]

    29. [29]

      (28) Liu, Y. M. Preparation and Characterization of New Nanostructured Catalysts for Oxidative Dehydrogenation of Propane to Propene. Ph. D. Dissertation, Fudan University, Shanghai, 2004.

    30. [30]

      [刘咏梅. 丙烷氧化脱氢制丙烯纳米催化剂的制备表征及应用

    31. [31]

      [D]. 上海: 复旦大学, 2004.]

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    13. [13]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

Metrics
  • PDF Downloads(982)
  • Abstract views(2853)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return