Citation: XIONG Peng-Fei, ZHONG Bei-Jing, YANG Fan. Heterogeneous Mechanism of C1-C4 on a Platinum Catalyst[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2200-2208. doi: 10.3866/PKU.WHXB20110927 shu

Heterogeneous Mechanism of C1-C4 on a Platinum Catalyst

  • Received Date: 16 May 2011
    Available Online: 19 July 2011

    Fund Project: 国家自然科学基金(50976056, 50721140648)资助项目 (50976056, 50721140648)

  • We developed a H2 and C1-C4 heterogeneous mechanism to describe their catalytic reaction on a platinum catalyst. To verify the mechanism we carried out simulations with methane, ethane, propane, and n-butane and compared the results to the reported experimental data. The ignition and combustion (ignition or combustion of CH4, C2H6 with or without adding H2, C3H8 with or without adding H2, C4H10 with adding H2) was of interest. od agreement was obtained and we found that H2 improved the ignition of propane and n-butane, and the combustion of ethane. However, their kinetic processes are different. Therefore, the H2 and C1-C4 heterogeneous mechanism determined in this work is reasonable with some certainty and could be used to describe the characteristics of ignition and combustion, which can be used to analyze the kinetic process.
  • 加载中
    1. [1]

      (1) Epstein, A. H.; Senturia, S. D. Science 1997, 276, 1211.  

    2. [2]

      (2) Fernandez-Pello, A. C. Proc. Combust. Inst. 2002, 29, 883.  

    3. [3]

      (3) Chigier, N.; Gemci, T. Electrohydrodynamic Atomization for MEMS Combustion Engines. In American Institute of Aeronautics and Astronautics. 41st Aerospace Sciences Meeting and Exhibit, Jan 6-9, 2003, Reno, Nevada. AIAA-2003-675, 2003.

    4. [4]

      (4) Dunn-Rankin, D.; Leal, E. M.;Walther, D. C. Progress in Energy and Combustion Science 2005, 31, 422.  

    5. [5]

      (5) Maruta, K. Proc. Combust. Inst. 2011, 33, 125.  

    6. [6]

      (6) Chao, Y. C.; Chen, G. B.; Hsu, C. J.; Leu, T. S.;Wu, C. Y.; Cheng, T. S. Combust. Sci. Tech. 2004, 176, 1755.  

    7. [7]

      (7) Veser, G. Chem. Eng. Sci. 2001, 56, 1265.  

    8. [8]

      (8) Norton, D. G.;Wetzel, E. D.; Vlachos, D. G. Ind. Eng. Chem. Res. 2004, 43, 4833.  

    9. [9]

      (9) Boyarko, G. A.; Sung, C. J.; Schneider, S. J. Proc. Combust. Inst. 2005, 30, 2481.  

    10. [10]

      (10) Volchko, S. J.; Sung, C. J.; Huang, Y.; Schneider, S. J. J. Propul Power 2006, 22, 684.  

    11. [11]

      (11) Deutschmann, O.; Schmidt, R.; Behrendt, F.;Warnatz, J. Proc. Combust. Inst. 1996, 26, 1747.

    12. [12]

      (12) Deutschmann, O.; Maier, L. I.; Riedel, U.; Stroemman, A. H.; Dibble, R.W. Catal. Today 2000, 59, 141.  

    13. [13]

      (13) Zerkle, D. K.; Allendorf, M. D.;Wolf, M.; Deutschmann, O. J. Catal. 2000, 196, 18.  

    14. [14]

      (14) Chatterjee, D.; Deutschmann, O.;Warnatz, J. Faraday Discuss. 2001, 119, 371.  

    15. [15]

      (15) Xu, C.; Koel, B. E.; Paffett, M. T. Langmuir 1994, 10, 166.  

    16. [16]

      (16) Roke, S.; Coquel, J. M.; Kleyn, A.W. Chem. Phys. Lett. 2000, 323, 201.  

    17. [17]

      (17) Weaver, J. F.; Krzyzowski, M. A.; Robert, J. M. J. Chem. Phys. 2000, 112, 396.  

    18. [18]

      (18) Pirngruber, G. D.; Seshan, K.; Lercher, J. A. J. Catal. 2000, 190, 338.  

    19. [19]

      (19) Jackson, S. D.; Kelly, G. J.;Webb, G. J. Catal. 1998, 176, 225.  

    20. [20]

      (20) Lee, I.; Zaera, F. J. Phys. Chem. B 2005, 109, 2745.  

    21. [21]

      (21) Duane, A. G.; Schmidt, L. D. Science 1996, 271, 1560.  

    22. [22]

      (22) Katano, S.; Kato, H. S.; Kawai, M.; Domen, K. J. Phys. Chem. C 2008, 112, 17219.  

    23. [23]

      (23) Marinov, N. M.; Pitz,W. J.;Westbrook, C. K.; Vincitore, A. M.; Castaldi, M. J.; Senkan, S. M.; Melius, C. F. Combust. Flame 1998, 114, 192.  

    24. [24]

      (24) Zhong, B. J.; Hong, Z. K. Heat and Power Engineering 2003, 18, 584. [钟北京, 洪泽恺. 热能动力工程, 2003, 18, 584.]

    25. [25]

      (25) Schwiedernoch, R.; Tischer, S.; Deutschmann, O.;Warnatz, J. Proc. Combust. Inst. 2002, 29, 1005.  

    26. [26]

      (26) Bodke, A. S.; Bharadwaj, S. S.; Schmidt, L. D. J. Catal. 1998, 179, 138.  

    27. [27]

      (27) Bodke, A. S.; Henning, D.; Schmidt, L. D.; Bharadwaj, S. S.; Maj, J. J.; Siddall, J. J. Catal. 2000, 191, 62.  

    28. [28]

      (28) Beretta, A.; Piovesan, L.; Forzatti, P. J. Catal. 1999, 184, 455.  

    29. [29]

      (29) Norton, D. G.; Vlachos, D. G. Proc. Combust. Inst. 2005, 30, 2473.  

    30. [30]

      (30) Zhong, B. J.; Yang, Q. T.; Yang, F. Combust. Flame 2010, 157, 2005.  

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    3. [3]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    4. [4]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    5. [5]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    8. [8]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    9. [9]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    10. [10]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    15. [15]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    16. [16]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    17. [17]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

Metrics
  • PDF Downloads(1127)
  • Abstract views(2679)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return