Citation: GUO Xing-Zhong, YAN Li-Qing, YANG Hui, LI Jian, LI Chao-Yu, CAI Xiao-Bo. Synthesis of Zirconia Aerogels by Ambient Pressure Drying with Propylene Oxide Addition[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2478-2484. doi: 10.3866/PKU.WHXB20110925 shu

Synthesis of Zirconia Aerogels by Ambient Pressure Drying with Propylene Oxide Addition

  • Received Date: 25 May 2011
    Available Online: 15 July 2011

    Fund Project: 浙江省重点创新团队项目(2009R50010)资助 (2009R50010)

  • ZrO2 aerogels were successfully synthesized by the sol-gel process and ambient pressure drying using ZrO(NO3)2·5H2O as a precursor, 1,2-propylene oxide (PO) as a gelation agent, and formamide (FA) as a drying control chemical additive (DCCA). The prepared zirconia aerogel samples were characterized using differential thermal analysis (DTA), scanning electron microscopy (SEM), and nitrogen adsorption/desorption analysis. The results showed that the zirconia aerogels prepared by the propylene oxide addition method had a nanoscale porous network structure, as well as supercritical dried ones, with a low bulk density (202.08 kg·m-3) and a high surface area (645.0 m2·g-1). Propylene oxide can induce gelation through its nucleophilic property and its irreversible ring-opening reaction, and thus the sol-gel process and the state of gel can be controlled.
  • 加载中
    1. [1]

      (1) Hasegawa, T.; Hashimoto, O.; Nagae, T.; Sekimoto, M. Nucl. Instrum. Methods Phys. Res. Sect. A 1994, 342, 383.  

    2. [2]

      (2) Burchell, M.J.; Fairey, S.A.J.; Foster, N.J.; Cole, M. J. Planet. Space Sci. 2009, 57, 58.  

    3. [3]

      (3) Ackerman,W.C.; Vlachos, M.; Rouanet, S.; Fruendt, J. J. Non-Cryst. Solids 2001, 285, 264.  

    4. [4]

      (4) Hostler, S.R.; Abramson, A.R.; Gawryla, M.D.; Bandi, S.A.; Schiraldi, D.A. Int. J. Heat Mass Transfer 2009, 52, 665.  

    5. [5]

      (5) Maury, S.; Buisson, P.; Perrard, A.; Pierre, A.C. J. Mol. Catal. B- Enzym. 2004, 29, 133.  

    6. [6]

      (6) Smirnova, A.;Wender, T.; berman, D.; Hu, Y. L.; Aindow, M.; Rhine,W.; Sammes, N.M. Int. J. Hydrog. Energy 2009, I, 6.

    7. [7]

      (7) Gerlach, R.; Krau?, O.; Fricke, J.; Eccardt, P. C.; Kroemer, N.; Ma ri, V. J. Non-Cryst. Solids 1992, 145, 227.  

    8. [8]

      (8) Krau?, O.; Gerlach, R.; Fricke, J. Ultrasonics 1994, 32, 217.  

    9. [9]

      (9) Li,W. C.; Probstie, H.; Fricke, J. J. Non-Cryst. Solids 2003, 325, 1.  

    10. [10]

      (10) Jang, K. J.; Kim K. J. J. Vac. Sci. Technol. A 1992, 10, 1152.  

    11. [11]

      (11) Bedilo, A. F.; Klabunde, K. J. Nanostruct. Mater. 1997, 8, 119.  

    12. [12]

      (12) Sun, Q.; Zhang, Y. L.; Deng, J. F.; Chen, S. Y.;Wu, D. Appl. Catal. A 1997, 152, L165.

    13. [13]

      (13) Wu, Z. G.; Zhao, Y. X.; Xu, L. P.; Liu. D. S. J. Non-Cryst. Solids 2003, 330, 274.  

    14. [14]

      (14) Chervin, N. C.; Clapsaddle, J. B.; Chiu,W. H.; et al. Chem. Mater 2005, 17, 3345.  

    15. [15]

      (15) Sui, R. H.; Rizkalla, A. S.; Charpentier, P. A. Langmuir 2006, 22, 4390.  

    16. [16]

      (16) Stocker, C.; Baiker. A. J. Non-Cryst. Solids 1998, 223, 165.  

    17. [17]

      (17) Signoretto, M.; Oliva, L.; Pinna, F.; Strukul, G. J. Non-Cryst. Solids 2001, 290, 145.  

    18. [18]

      (18) Kalies, H.; Pinto, N.; Pajonk, G. M.; Bianchi, D. Appl. Catal. A 2000, 202, 197.  

    19. [19]

      (19) Xiang, H.W.; Zhong, B.; Peng, S. Y.;Wu, D.; Fan,W. H. J. Mol. Catal. (China) 1994, 8, 263.

    20. [20]

      [相宏伟, 钟炳, 彭少逸, 吴东, 范文浩. 分子催化, 1994, 8, 263.]

    21. [21]

      (20) Xiang, H.W.; Zhong, B.; Peng, S. Y.;Wu, D.; Fan,W. H. J. Fuel Chem. Technol. 1994, 22, 119.

    22. [22]

      [相宏伟, 钟炳, 彭少逸, 吴东, 范文浩. 燃料化学学报, 1994, 22, 119.]

    23. [23]

      (21) Xiang, H.W.; Zhong, B.; Peng, S. Y.;Wu, D.; Fan,W. H. J. Fuel Chem. Technol. 1994, 22, 125.

    24. [24]

      [相宏伟, 钟炳, 彭少逸, 吴东, 范文浩. 燃料化学学报, 1994, 22, 125.]

    25. [25]

      (22) Xiang, H.W.; Zhong, B.; Peng, S. Y.;Wu, D.; Fan,W. H. Acta Phys. -Chim. Sin. 1995, 11, 46.

    26. [26]

      [相宏伟, 钟炳, 彭少逸, 吴东, 范文浩. 物理化学学报, 1995, 11, 46.]

    27. [27]

      (23) Wu, Z. G.; Zhao, Y. X.; Liu, D. S. J. Funct. Mater. 2004, 35, 389.

    28. [28]

      [武志刚, 赵永祥, 刘滇生. 功能材料, 2004, 35, 389.]

    29. [29]

      (24) Bai, L. H.; Ma, H. X.; Gao, C. G.; Zhao, Y. X. J. Mol. Catal. (China) 2006, 20, 539.

    30. [30]

      [白利红, 马宏勋, 高春光, 赵永祥. 分子催化, 2006, 20, 539.]

    31. [31]

      (25) Haranath, D.; Rao V.;Wagh P. B. J J. Porous Mater. 1999, 6, 55.  

    32. [32]

      (26) Xu, Z. J.; Gan, L. H.; Pang, Y. C.; Chen, L.W. Acta Phys. -Chim. Sin. 2005, 21, 221.

    33. [33]

      [徐子颉, 甘礼华, 庞颖聪, 陈龙武. 物理化学学报, 2005, 21, 221.]

    34. [34]

      (27) Haereid, S.; Dahle, M.; Lima, S.; Einarsrud, M. A. J. Non-Cryst. Solids 1995, 186, 96.  

    35. [35]

      (28) Einarsrud, M. A.; Nilsen, E.; Rigacci, A.; Pajonk, G. M.; Buathier, S.; Valette, D.; Durant, M.; Chevalier, B.; Nitz, P.; Ehrburger-Dolle, F. J. Non-Cryst. Solids 2001, 285, 1.  

    36. [36]

      (29) Gash, A. E.; Tillotson, T. M.; Satcher Jr., J. H.; Hrubesh, L.W.; Simpson, R. L. J. Non-Cryst. Solids 2001, 285, 22.  

  • 加载中
    1. [1]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    2. [2]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    3. [3]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    4. [4]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    5. [5]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    6. [6]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    7. [7]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    8. [8]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    9. [9]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    10. [10]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    11. [11]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    12. [12]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    13. [13]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    14. [14]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    15. [15]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    16. [16]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    17. [17]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    18. [18]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    19. [19]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

Metrics
  • PDF Downloads(1152)
  • Abstract views(3365)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return