Citation: ZHU Yuan-Qiang, GUO Jian-Chun, YE Zhong-Bin. AuClx (x=1, 3)-Catalyzed Benzannulation Mechanisms between 2-Propynyl-hypnone and Benzyne[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2043-2050. doi: 10.3866/PKU.WHXB20110921
-
The AuClx (x=1, 3)-catalyzed benzannulation mechanisms between benzyne and 2-propynylhypnone were investigated using B3LYP, B3PW91, UB3LYP, and the second-order Møller-Plesset perturbation (MP2) methods with the LanL2DZ basis set for Au and the 6-31G*, 6-311++G** basis sets for C, H, O, Cl. For the AuCl or AuCl3 catalysts the reaction occurs through both the [4 + 2] and the [3 + 2] benzannulation pathways to yield the product. With AuCl, the reaction occurs mainly through the [4 + 2] reaction pathway because of this pathway's low activation free energy. With AuCl3, the reaction occurs by the [4+2] and the [3+2] reaction pathways. These two pathways are competitive because of their close activation free energies. An analysis of these results indicates that the ld oxidation states change the reaction mechanisms and greatly influence the reaction barriers. The calculated results indicate that the AuCl catalyst is more effective than AuCl3 because in the reaction catalyzed by AuCl the activation free energy of the rate determining step is 11.18 kJ·mol-1 lower than that of the reaction catalyzed by AuCl3. These results are in od agreement with the experimental observations.
-
-
[1]
(1) Teschner, D.; Borsodi, J.;Wootsch, A.; Révay, Z.; H?vecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlögl, R. Science 2008, 320, 86.
-
[2]
(2) Malcolmson, S. J.; Meek, S. J.; Sattely, E. S.; Schrock, R. R.; Hoveyda, A. H. Nature 2008, 456,933.
- [3]
-
[4]
(4) Hoffmann-Rader, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387.
-
[5]
(5) Hashmi, A. S. K. Angew. Chem. Int. Edit. 2005, 44, 6990.
- [6]
-
[7]
(7) Cui, D. N.; Zheng, Z. L.; Zhang, C. J. Org. Chem. 2009, 74, 1426.
-
[8]
(8) Dyker, G. Angew. Chem. Int. Edit. 2000, 39, 4237.
- [9]
-
[10]
(10) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 10921.
-
[11]
(11) Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627.
-
[12]
(12) Horino, Y.; Yamamoto, T.; Ueda, K.; Kuroda, S.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 2809.
-
[13]
(13) Norman, R. O. C.; Parr,W. J. E.; Thomas, C. B. J. Chem. Soc. Perkin Trans. 1 1976, 18, 1983.
-
[14]
(14) Straub, B. F.; Hofmann, P. Angew. Chem. Int. Edit. 2001, 40, 1288.
- [15]
-
[16]
(16) Dyker, G.; Hildebrandt, D.; Liu, J.; Merz, K. Angew. Chem. Int. Edit. 2003, 42, 4399.
- [17]
-
[18]
(18) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2005, 127, 6962.
-
[19]
(19) rin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260.
-
[20]
(20) Ma, S.; Yu, S.; Gu, Z. Angew. Chem. Int. Edit. 2006, 45, 200.
-
[21]
(21) Biehl, E. R.; Khanapure, S. P. Accounts Chem. Res. 1989, 22, 275.
-
[22]
(22) Pellissier, H.; Santelli, M. Tetrahedron 2003, 59, 701.
-
[23]
(23) Wenk, H. H.;Winkler, M.; Sander,W. Angew. Chem. Int. Edit. 2003, 42, 502.
-
[24]
(24) Lu, J.; Ho, D. M.; Vogelaar, N. J.; Kraml, C. M.; Pascal, R. A., Jr. J. Am. Chem. Soc. 2004, 126, 11168.
-
[25]
(25) Ikadai, J.; Yoshida, H.; Ohshita, J.; Kunai, A. Chem. Lett. 2005, 34, 56.
-
[26]
(26) Hayes, M. E.; Shinokubo, H.; Danheiser, R. L. Org. Lett. 2005, 7, 3917.
-
[27]
(27) Dockendorff, C.; Sahli, S.; Olsen, M.; Milhau, L.; Lautens, M. J. Am. Chem. Soc. 2005, 127, 15028.
-
[28]
(28) Henderson, J. L.; Edwards, A. S.; Greaney, M. F. J. Am. Chem. Soc. 2006, 128, 7426.
-
[29]
(29) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650.
- [30]
-
[31]
(31) Straub, B. F. Chem. Commun. 2004, 1726.
-
[32]
(32) Koch,W.; Holthausen, M. C. A Chemist ?s Guide to Density Functional Theory, 2nd ed.;Wiley-VCH:Weinheim, Germany, 2000.
- [33]
-
[34]
(34) Tielens, F.; Saeys, M.; Tourwé, E.; Marin, G. B.; Hubin, A.; Geerlings, P. J. Phys. Chem. A 2002, 106, 1450.
-
[35]
(35) Blajiev, O.; Hubin, A.; Tielens, F.; Geerlings, P. J. Raman Spectrosc. 2003, 34, 295.
-
[36]
(36) Doneux, T.; Tielens, F.; Geerlings, P.; Buess-Herman, C. J. Phys. Chem. A 2006, 110, 11346.
-
[37]
(37) Perdew, J. P.;Wang, Y. Phys. Re v. B 1992, 45, 13244.
-
[38]
(38) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
- [39]
- [40]
- [41]
-
[42]
(42) nzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.
-
[43]
(43) nzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.
-
[44]
(44) Frisch, M. J.; Head- rdon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 275.
-
[45]
(45) Frisch, M. J.; Head- rdon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 281.
-
[46]
(46) Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Int. J. Quant. Chem. Symp. 1979, 13, 325.
-
[47]
(47) Handy, N. C.; Schaefer, H. F., III. J. Chem. Phys. 1984, 81, 5031.
-
[48]
(48) Reed, A. E.; Curtiss, L. A.;Weinhold, F. Chem. Rev. 1988, 88, 899.
-
[49]
(49) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al . Gaussian 03, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[3]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[4]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[5]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[6]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[7]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[8]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[9]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[10]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[11]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[12]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[13]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[14]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[15]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[16]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[17]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[18]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[19]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[20]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[1]
Metrics
- PDF Downloads(951)
- Abstract views(3868)
- HTML views(27)