Citation: ZHU Yuan-Qiang, GUO Jian-Chun, YE Zhong-Bin. AuClx (x=1, 3)-Catalyzed Benzannulation Mechanisms between 2-Propynyl-hypnone and Benzyne[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2043-2050. doi: 10.3866/PKU.WHXB20110921 shu

AuClx (x=1, 3)-Catalyzed Benzannulation Mechanisms between 2-Propynyl-hypnone and Benzyne

  • Received Date: 9 May 2011
    Available Online: 14 July 2011

    Fund Project: 四川省教育厅科研项目(09ZB099)资助 (09ZB099)

  • The AuClx (x=1, 3)-catalyzed benzannulation mechanisms between benzyne and 2-propynylhypnone were investigated using B3LYP, B3PW91, UB3LYP, and the second-order Møller-Plesset perturbation (MP2) methods with the LanL2DZ basis set for Au and the 6-31G*, 6-311++G** basis sets for C, H, O, Cl. For the AuCl or AuCl3 catalysts the reaction occurs through both the [4 + 2] and the [3 + 2] benzannulation pathways to yield the product. With AuCl, the reaction occurs mainly through the [4 + 2] reaction pathway because of this pathway's low activation free energy. With AuCl3, the reaction occurs by the [4+2] and the [3+2] reaction pathways. These two pathways are competitive because of their close activation free energies. An analysis of these results indicates that the ld oxidation states change the reaction mechanisms and greatly influence the reaction barriers. The calculated results indicate that the AuCl catalyst is more effective than AuCl3 because in the reaction catalyzed by AuCl the activation free energy of the rate determining step is 11.18 kJ·mol-1 lower than that of the reaction catalyzed by AuCl3. These results are in od agreement with the experimental observations.
  • 加载中
    1. [1]

      (1) Teschner, D.; Borsodi, J.;Wootsch, A.; Révay, Z.; H?vecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlögl, R. Science 2008, 320, 86.  

    2. [2]

      (2) Malcolmson, S. J.; Meek, S. J.; Sattely, E. S.; Schrock, R. R.; Hoveyda, A. H. Nature 2008, 456,933.  

    3. [3]

      (3) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901.  

    4. [4]

      (4) Hoffmann-Rader, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387.  

    5. [5]

      (5) Hashmi, A. S. K. Angew. Chem. Int. Edit. 2005, 44, 6990.  

    6. [6]

      (6) Hashmi, A. S. K. ld Bull. 2004, 37, 51.  

    7. [7]

      (7) Cui, D. N.; Zheng, Z. L.; Zhang, C. J. Org. Chem. 2009, 74, 1426.  

    8. [8]

      (8) Dyker, G. Angew. Chem. Int. Edit. 2000, 39, 4237.

    9. [9]

      (9) Corma, A.; Serna, P. Science 2006, 313, 332.  

    10. [10]

      (10) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 10921.  

    11. [11]

      (11) Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627.  

    12. [12]

      (12) Horino, Y.; Yamamoto, T.; Ueda, K.; Kuroda, S.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 2809.  

    13. [13]

      (13) Norman, R. O. C.; Parr,W. J. E.; Thomas, C. B. J. Chem. Soc. Perkin Trans. 1 1976, 18, 1983.

    14. [14]

      (14) Straub, B. F.; Hofmann, P. Angew. Chem. Int. Edit. 2001, 40, 1288.  

    15. [15]

      (15) Straub, B. F.; llub, C. Chem. Eur. J. 2004, 10, 3081.  

    16. [16]

      (16) Dyker, G.; Hildebrandt, D.; Liu, J.; Merz, K. Angew. Chem. Int. Edit. 2003, 42, 4399.  

    17. [17]

      (17) Hashmi, A. S. K. ld Bull. 2004, 37, 3.  

    18. [18]

      (18) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2005, 127, 6962.  

    19. [19]

      (19) rin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260.  

    20. [20]

      (20) Ma, S.; Yu, S.; Gu, Z. Angew. Chem. Int. Edit. 2006, 45, 200.  

    21. [21]

      (21) Biehl, E. R.; Khanapure, S. P. Accounts Chem. Res. 1989, 22, 275.  

    22. [22]

      (22) Pellissier, H.; Santelli, M. Tetrahedron 2003, 59, 701.  

    23. [23]

      (23) Wenk, H. H.;Winkler, M.; Sander,W. Angew. Chem. Int. Edit. 2003, 42, 502.  

    24. [24]

      (24) Lu, J.; Ho, D. M.; Vogelaar, N. J.; Kraml, C. M.; Pascal, R. A., Jr. J. Am. Chem. Soc. 2004, 126, 11168.  

    25. [25]

      (25) Ikadai, J.; Yoshida, H.; Ohshita, J.; Kunai, A. Chem. Lett. 2005, 34, 56.  

    26. [26]

      (26) Hayes, M. E.; Shinokubo, H.; Danheiser, R. L. Org. Lett. 2005, 7, 3917.  

    27. [27]

      (27) Dockendorff, C.; Sahli, S.; Olsen, M.; Milhau, L.; Lautens, M. J. Am. Chem. Soc. 2005, 127, 15028.  

    28. [28]

      (28) Henderson, J. L.; Edwards, A. S.; Greaney, M. F. J. Am. Chem. Soc. 2006, 128, 7426.  

    29. [29]

      (29) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650.  

    30. [30]

      (30) Asao, N.; Sato, K. Org. Lett. 2006, 8, 5361.  

    31. [31]

      (31) Straub, B. F. Chem. Commun. 2004, 1726.

    32. [32]

      (32) Koch,W.; Holthausen, M. C. A Chemist ?s Guide to Density Functional Theory, 2nd ed.;Wiley-VCH:Weinheim, Germany, 2000.

    33. [33]

      (33) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  

    34. [34]

      (34) Tielens, F.; Saeys, M.; Tourwé, E.; Marin, G. B.; Hubin, A.; Geerlings, P. J. Phys. Chem. A 2002, 106, 1450.  

    35. [35]

      (35) Blajiev, O.; Hubin, A.; Tielens, F.; Geerlings, P. J. Raman Spectrosc. 2003, 34, 295.  

    36. [36]

      (36) Doneux, T.; Tielens, F.; Geerlings, P.; Buess-Herman, C. J. Phys. Chem. A 2006, 110, 11346.  

    37. [37]

      (37) Perdew, J. P.;Wang, Y. Phys. Re v. B 1992, 45, 13244.

    38. [38]

      (38) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  

    39. [39]

      (39) Hay, P. J.;Wadt,W. R. J. Chem. Phys. 1985, 82, 299.  

    40. [40]

      (40) Wadt,W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.  

    41. [41]

      (41) Hay, P. J.;Wadt,W. R. J. Chem. Phys. 1985, 82, 270.  

    42. [42]

      (42) nzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.  

    43. [43]

      (43) nzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.  

    44. [44]

      (44) Frisch, M. J.; Head- rdon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 275.  

    45. [45]

      (45) Frisch, M. J.; Head- rdon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 281.  

    46. [46]

      (46) Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Int. J. Quant. Chem. Symp. 1979, 13, 325.

    47. [47]

      (47) Handy, N. C.; Schaefer, H. F., III. J. Chem. Phys. 1984, 81, 5031.  

    48. [48]

      (48) Reed, A. E.; Curtiss, L. A.;Weinhold, F. Chem. Rev. 1988, 88, 899.  

    49. [49]

      (49) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al . Gaussian 03, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    7. [7]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

Metrics
  • PDF Downloads(951)
  • Abstract views(3868)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return