Citation: PU Peng, XU Can, XIE Shu-Yu. Influence of the Size Effect on the Chemical Shielding Tensors of SiO2 Nanotubes[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2227-2232. doi: 10.3866/PKU.WHXB20110916 shu

Influence of the Size Effect on the Chemical Shielding Tensors of SiO2 Nanotubes

  • Received Date: 23 May 2011
    Available Online: 11 July 2011

    Fund Project: 国家杰出青年科学基金(50925103)资助项目 (50925103)

  • Finite length SiO2 nanotubes composed of a three-membered ring (3MR) cross section were investigated by density functional theory. Nuclear magnetic resonance (NMR) results reveal that the isotropic chemical shielding tensor (σiso) and anisotropic chemical shielding tensor (Δσ) of the SiO2 nanotubes oscillate from the terminal end to the intermediate part of the structures with an increase in nanotube lengths, and they tend to reach different stable values. When the length is greater than certain value the σiso and Δσ values obtained from the intermediate part of the finite length nanotube can be used for theoretical predictions of long or infinite length nanotubes. Hence, this investigation is a guide for the selection of reasonable finite length nanotubes to model infinite length nanotubes.
  • 加载中
    1. [1]

      (1) Iijima, S. Nature 1991, 354, 56.  

    2. [2]

      (2) Lee, J. B.; Lee, S. C.; Lee, S. M.; Kim, H. J. Chem. Phys. Lett. 2007, 436, 162.  

    3. [3]

      (3) Ding, H. M.; Shao, L.; Liu, R. J.; Xiao, Q. G.; Chen, J. F. J. Colloid Interface Sci. 2005, 290, 102.  

    4. [4]

      (4) Xiao, Q. G.; Tao, X.; Zhang, J. P.; Chen, J. F. J. Mol. Catal B-Enzym. 2006, 42, 14.  

    5. [5]

      (5) Mor, G. K.; Carvalho, M. A.; Varghese, O. K.; Pishko, M. V.; Grimes, C. A. J. Mater. Res. 2004, 19, 628.

    6. [6]

      (6) Liang, J.; Ma, S. F.; Han, P. D.; Sun, C. Y.; Xu, B. S. Rare Metal Mat. Eng. 2005, 34, 287.

    7. [7]

      (7) Chen,W.; Mai, L. Q.; Xu, Q.; Peng, J. F.; Zhu, Q. Y.; Yu, H. J. Inorg. Mater. 2005, 20, 65.

    8. [8]

      (8) Chen, J.; Li, S. L.; Tao, Z. L. J. Alloy. Compd. 2003, 356, 413.  

    9. [9]

      (9) Zhang, M.; Ciocan, E.; Bando, Y.;Wada, K.; Cheng, L. L.; Pirouz, P. Appl. Phys. Lett. 2002, 80, 491.  

    10. [10]

      (10) Niu, J.; Sha, J.; Zhang, N.; Ji, Y.; Ma, X.; Yang, D. Physica E 2004, 23, 1.  

    11. [11]

      (11) Yu, D. P.; Hang, Q. L.; Ding, Y.; Zhang, H. Z.; Bai, Z. G.;Wang, J. J.; Zou, Y. H.; Qian,W.; Xiong, G. C.; Feng, S. Q. Appl. Phys. Lett. 1998, 73, 3076.  

    12. [12]

      (12) Pan, Z.W.; Dai, Z. R.; Ma, C.;Wang, Z. L. J. Am. Chem. Soc. 2002, 124, 1817.  

    13. [13]

      (13) Bodaghi, A.; Mirzaei, M.; Seif, A.; Giahi, M. Physica E 2008, 41, 209.  

    14. [14]

      (14) Mirzaei, M.; Nouri, A. J. Mol. Struct.-Theochem 2010, 942, 83.  

    15. [15]

      (15) Mirzaei, M.; Seif, A.; Hadipour, N. L. Chem. Phys. Lett. 2008, 461, 246.  

    16. [16]

      (16) Nouri, A.; Mirzaei, M. J. Mol. Struct.-Theochem 2009, 913, 207.  

    17. [17]

      (17) Zurek, E.; Pickard, C. J.; Autschbach, J. J. Phys. Chem. A 2009, 113, 4117.  

    18. [18]

      (18) Xu, C.; Cao, J.; Zhu, L. F.; Gao, C. Y. Acta Phys. -Chim. Sin. 2006, 22, 451. [徐灿, 曹娟, 朱莉芳, 高晨阳. 物理化学学报, 2006, 22, 451.]  

    19. [19]

      (19) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  

    20. [20]

      (20) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  

    21. [21]

      (21) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251.  

    22. [22]

      (22) Lipton, A. S.; Ellis, P. D. J. Am. Chem. Soc. 2007, 129, 9192.  

    23. [23]

      (23) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.:Wallingford, CT, 2004.

    24. [24]

      (24) Helgaker, T.; Jaszunski, M.; Ruud, K. Chem. Rev. 1999, 99, 293.  

    25. [25]

      (25) Dong,W. J.; Li,W. J.; Yu, K. F.; Krishna, K.; Song, L. Z.; Wang, X. F.;Wang, Z. C.; Coppens, M. O.; Feng, S. H. Chem. Commun. 2003, 1302.

    26. [26]

      (26) Trong, O. D.; Kaliaguine, S. Angew. Chem. Int. Edit. 2002, 41, 1036.  

  • 加载中
    1. [1]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    2. [2]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    3. [3]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    4. [4]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    5. [5]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    10. [10]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    11. [11]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    12. [12]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    13. [13]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    16. [16]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    17. [17]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    18. [18]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    19. [19]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(918)
  • Abstract views(2443)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return